Functional analyses of a highly thermostable hexokinase from Pyrobaculum calidifontis
- PMID: 36395717
- DOI: 10.1016/j.carres.2022.108711
Functional analyses of a highly thermostable hexokinase from Pyrobaculum calidifontis
Abstract
The gene encoding a repressor open reading frame sugar kinase (ROK) family protein from hyperthermophilic crenarchaeon Pyrobaculum calidifontis, Pcal-HK, was cloned and expressed in Escherichia coli. The recombinant protein was produced in soluble and highly active form. Purified Pcal-HK was highly thermostable and existed in a monomeric form in solution. The enzyme was specific to ATP as phosphoryl donor but showed broad specificity to phosphoryl acceptors. It catalyzed the phosphorylation of a number of hexoses, including glucose, glucosamine, N-acetyl glucosamine, fructose and mannose, at nearly the same rate and similar affinity. The enzyme was metal ion dependent exhibiting highest activity at 90-95 °C and pH 8.5. Mg2+ was most effective metal ion, which could be partially replaced by Mn2+, Ni2+ or Zn2+. Kinetic parameters were determined at 90 °C and the enzyme showed almost similar catalytic efficiency (kcat/Km) towards the above mentioned hexoses. To the best of our knowledge, Pcal-HK is the most active thermostable ROK family hexokinase characterized to date which catalyzes the phosphorylation of various hexoses with nearly similar affinity.
Keywords: Crenarchaeota; Functional analysis; Hexokinase; Pyrobaculum calidifontis; Thermostable.
Copyright © 2022 Elsevier Ltd. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous
