Transport of molybdate by Clostridium pasteurianum
- PMID: 364
- PMCID: PMC236041
- DOI: 10.1128/jb.124.3.1295-1301.1975
Transport of molybdate by Clostridium pasteurianum
Abstract
The transport of 99MoO42- into dinitrogen-fixing cells of Clostridium pasteurianum was investigated. Transport of molybdate in this organism is energy dependent; sucrose is required in the minimal media, and the system is inhibited by the glycolysis inhibitors, NaF, iodoacetic acid, and arsenate. The cells accumulate molybdate against a concentration gradient, and the uptake shows a marked dependence on temperature (optimum 37 C) and pH (optimum 6.0). The rate of molybdate uptake with increasing molybdate concentrations shows saturation kinetics with an apparent Km and Vmax of 4.8 X 10(-5) M and 55 nmol/g of dry cells per min, respectively. Inhibition studies with the anions SO42-, S2O32-, WO42-, and VO32- show that SO42- and WO42- competitively inhibit MoO42- uptake (apparent Ki [SO42-] is 3.0 X 10(-5) M; apparent Ki [WO42-] is 2.4 X 10(-5), whereas S2O32- and VO32- have no inhibitory effect. Exchange experiments with MoO42- show that only a small percentage of the 99MoO42- taken up by the cells is exchangeable. Exchange experiments with WO42- and SO42- indicate that once inside the cells WO42- and SO42- cannot substitute for MoO42-.
Similar articles
-
Molybdate and tungstate transfer by rat ileum. Competitive inhibition by sulphate.Biochim Biophys Acta. 1976 Dec 14;455(3):937-46. doi: 10.1016/0005-2736(76)90062-6. Biochim Biophys Acta. 1976. PMID: 999946
-
Regulation of molybdate transport by Clostridium pasteurianum.J Bacteriol. 1976 Aug;127(2):770-9. doi: 10.1128/jb.127.2.770-779.1976. J Bacteriol. 1976. PMID: 956118 Free PMC article.
-
Molybdate transport by Bradyrhizobium japonicum bacteroids.J Bacteriol. 1988 Dec;170(12):5613-9. doi: 10.1128/jb.170.12.5613-5619.1988. J Bacteriol. 1988. PMID: 3192511 Free PMC article.
-
Bacterial transport of sulfate, molybdate, and related oxyanions.Biometals. 2011 Aug;24(4):687-707. doi: 10.1007/s10534-011-9421-x. Epub 2011 Feb 8. Biometals. 2011. PMID: 21301930 Review.
-
Molybdate transport and regulation in bacteria.Arch Microbiol. 1997 Nov;168(5):345-54. doi: 10.1007/s002030050508. Arch Microbiol. 1997. PMID: 9325422 Review.
Cited by
-
Identification of a new gene, molR, essential for utilization of molybdate by Escherichia coli.J Bacteriol. 1990 Apr;172(4):2079-87. doi: 10.1128/jb.172.4.2079-2087.1990. J Bacteriol. 1990. PMID: 2156810 Free PMC article.
-
Regulation and order of involvement of molybdoproteins during synthesis of molybdoenzymes in Clostridium pasteurianum.J Bacteriol. 1985 May;162(2):485-93. doi: 10.1128/jb.162.2.485-493.1985. J Bacteriol. 1985. PMID: 3857224 Free PMC article.
-
Some properties of formate dehydrogenase, accumulation and incorporation of 185W-tungsten into proteins of Clostridium formicoaceticum.Arch Microbiol. 1977 Dec 15;115(3):277-84. doi: 10.1007/BF00446453. Arch Microbiol. 1977. PMID: 23733
-
The role of metals in carcinogenesis: biochemistry and metabolism.Environ Health Perspect. 1981 Aug;40:233-52. doi: 10.1289/ehp.8140233. Environ Health Perspect. 1981. PMID: 7023933 Free PMC article. Review.
-
Role of the nifQ gene product in the incorporation of molybdenum into nitrogenase in Klebsiella pneumoniae.J Bacteriol. 1984 Apr;158(1):187-94. doi: 10.1128/jb.158.1.187-194.1984. J Bacteriol. 1984. PMID: 6370956 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources