A new enzymatic assay to quantify inorganic pyrophosphate in plasma
- PMID: 36400967
- PMCID: PMC9839608
- DOI: 10.1007/s00216-022-04430-8
A new enzymatic assay to quantify inorganic pyrophosphate in plasma
Abstract
Inorganic pyrophosphate (PPi) is a crucial extracellular mineralization regulator. Low plasma PPi concentrations underlie the soft tissue calcification present in several rare hereditary mineralization disorders as well as in more common conditions like chronic kidney disease and diabetes. Even though deregulated plasma PPi homeostasis is known to be linked to multiple human diseases, there is currently no reliable assay for its quantification. We here describe a PPi assay that employs the enzyme ATP sulfurylase to convert PPi into ATP. Generated ATP is subsequently quantified by firefly luciferase-based bioluminescence. An internal ATP standard was used to correct for sample-specific interference by matrix compounds on firefly luciferase activity. The assay was validated and shows excellent precision (< 3.5%) and accuracy (93-106%) of PPi spiked into human plasma samples. We found that of several anticoagulants tested only EDTA effectively blocked conversion of ATP into PPi in plasma after blood collection. Moreover, filtration over a 300,000-Da molecular weight cut-off membrane reduced variability of plasma PPi and removed ATP present in a membrane-enclosed compartment, possibly platelets. Applied to plasma samples of wild-type and Abcc6-/- rats, an animal model with established low circulating levels of PPi, the new assay showed lower variability than the assay that was previously in routine use in our laboratory. In conclusion, we here report a new and robust assay to determine PPi concentrations in plasma, which outperforms currently available assays because of its high sensitivity, precision, and accuracy.
Keywords: ATP sulfurylase; Ectopic mineralization; Mineralization inhibitor; Plasma; Pyrophosphate; Vascular calcification.
© 2022. Springer-Verlag GmbH Germany, part of Springer Nature.
Conflict of interest statement
Conflicts of Interest
The authors declare no competing conflict of interest
Figures
References
-
- Jansen RS, Küçükosmanoglu A, Haas M de, Sapthu S, Otero JA, Hegman IEM, Bergen AAB, Gorgels TGMF, Borst P, Wetering K van de (2013) ABCC6 prevents ectopic mineralization seen in pseudoxanthoma elasticum by inducing cellular nucleotide release. Proc Natl Acad Sci USA 110:20206–20211. 10.1073/pnas.1319582110 - DOI - PMC - PubMed
MeSH terms
Substances
Grants and funding
- R01AR072695/AR/NIAMS NIH HHS/United States
- Development/Ministry for Innovation and Technology from the source of the National Research
- R01 AR072695/AR/NIAMS NIH HHS/United States
- Bolyai János Fellowship BO/00730/19/8/Magyar Tudományos Akadémia
- Innovation Fund (ÚNKP-2022)/Ministry for Innovation and Technology from the source of the National Research
LinkOut - more resources
Full Text Sources
