Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jan;19(1):e2203331.
doi: 10.1002/smll.202203331. Epub 2022 Nov 20.

Entrapped Molecule-Like Europium-Oxide Clusters in Zinc Oxide with Nearly Unaffected Host Structure

Affiliations

Entrapped Molecule-Like Europium-Oxide Clusters in Zinc Oxide with Nearly Unaffected Host Structure

Soham Mukherjee et al. Small. 2023 Jan.

Abstract

Nanocrystalline ZnO sponges doped with 5 mol% EuO1.5 are obtained by heating metal-salt complex based precursor pastes at 200-900 °C for 3 min. X-ray diffraction, transmission electron microscopy, and extended X-ray absorption fine structure (EXAFS) show that phase separation into ZnO:Eu and c-Eu2 O3 takes place upon heating at 700 °C or higher. The unit cell of the clean oxide made at 600 °C shows only ≈0.4% volume increase versus undoped ZnO, and EXAFS shows a ZnO local structure that is little affected by the Eu-doping and an average Eu3+ ion coordination number of ≈5.2. Comparisons of 23 density functional theory-generated structures having differently sized Eu-oxide clusters embedded in ZnO identify three structures with four or eight Eu atoms as the most energetically favorable. These clusters exhibit the smallest volume increase compared to undoped ZnO and Eu coordination numbers of 5.2-5.5, all in excellent agreement with experimental data. ZnO defect states are crucial for efficient Eu3+ excitation, while c-Eu2 O3 phase separation results in loss of the characteristic Eu3+ photoluminescence. The formation of molecule-like Eu-oxide clusters, entrapped in ZnO, proposed here, may help in understanding the nature of the unexpected high doping levels of lanthanide ions in ZnO that occur virtually without significant change in ZnO unit cell dimensions.

Keywords: density functional theory (DFT); dopant structures; doped ZnO; extended X-ray absorption fine structure (EXAFS); lanthanide doping; solution processing; sponges.

PubMed Disclaimer

References

    1. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. A. Morko, J. Appl. Phys. 2005, 98, 041301.
    1. A. Kołodziejczak-Radzimska, T. Jesionowski, Materials 2014, 7, 2833.
    1. Z. L. Wang, J. Phys. Condens. Matter 2004, 16, R829.
    1. B. I. Kharisov, O. V. Kharissova, B. O. García, Y. P. Méndez, I. Gómez de la Fuente, RSC Adv. 2015, 5, 105507.
    1. V. Cauda, D. Pugliese, N. Garino, A. Sacco, S. Bianco, F. Bella, A. Lamberti, C. Gerbaldi, Energy 2014, 65, 639.

Publication types

LinkOut - more resources