Kinematic draping simulation optimization of a composite B-pillar geometry using particle swarm optimization
- PMID: 36406739
- PMCID: PMC9668529
- DOI: 10.1016/j.heliyon.2022.e11525
Kinematic draping simulation optimization of a composite B-pillar geometry using particle swarm optimization
Abstract
The present work presents an algorithmic approach to determine the optimal starting point for any complex geometry draping processes. The time-efficient Kinematic Draping Simulation (KDS) is used to assess the drapability of a geometry depending on many different starting points. The optimization problem is then solved by applying Particle Swarm Optimization (PSO). The proposed methodology is applied to and validated with complex geometry and a common part of the automobile industry: the B-Pillar geometry. The results show that the PSO algorithm may improve random search up to 78 times. After several experiments, PSO particles have discrete coordinates and are located at optimum global and local regions most of the time, leading to solutions for complex objective functions. The global solution is such that the starting point is located near the geometrical centre of the B-Pillar. The novelty of the work is evident: it uses optimization for a real engineering application, and it draws pattern-related conclusions for other geometries. Experimental results are shown to be consistent with simulation results.
Keywords: B-Pillar; Kinematic draping simulation; Particle swarm optimization; Starting point.
© 2022 Published by Elsevier Ltd.
Conflict of interest statement
The authors declare no conflict of interest.
Figures















References
-
- International Energy Agency Co2 emissions from fuel combustion 2020. 2020. https://www.iea.org/reports/co2-emissions-from-fuel-combustion-overview
-
- Lässig R., Eisenhut M., Mathias A., Schulte R.T., Peters F., Kühmann T., Waldmann T., Begemann W. 2012. Serienproduktion von hochfesten Faserverbundbauteilen: Perspektiven für den deutschen Maschinenund Anlagenbau.
-
- Lenz C. RWTH Aachen University; Aachen, Germany: 2017. Konzept für einen modifizierten Produktentstehungsprozess von Faserverbundbauteilen zur Anwendung integral verstärkter Gewebe. Ph.D. thesis.
-
- Schöfer S. RWTH Aachen University; Aachen, Germany: 2020. Kraftgesteuerte Materialzuführung beim Drapierprozess in der automatisierten Herstelleung von Faserverbundwerkstoffen. Ph.D. thesis.
-
- Hesseler S., Stapleton S.E., Appel L., Schöfer S., Manin B. 2021. Modeling of Reinforcement Fibers and Textiles Advances in Modeling and Simulation in Textile Engineering.
LinkOut - more resources
Full Text Sources