Influence of aging on mechanical properties of the femoral neck using an inverse method
- PMID: 36407416
- PMCID: PMC9673104
- DOI: 10.1016/j.bonr.2022.101638
Influence of aging on mechanical properties of the femoral neck using an inverse method
Abstract
Today, we are facing rapid aging of the world population, which increases the incidence of hip fractures. The gold standard of bone strength assessment in the laboratory is micro-computed finite element analysis (μFEA) based on micro-computed tomography (μCT) images. In clinics, the standard method to assess bone fracture risk is based on areal bone mineral density (aBMD), measured by dual-energy X-ray absorptiometry (DXA). In addition, homogenized finite element analysis (hFEA) constructed from quantitative computed tomography reconstructions (QCT) predicts clinical bone strength more accurately than DXA. Despite considerable evidence of degradation of bone material properties with age, in the past fifty years of finite element analysis to predict bone strength, bone material parameters remained independent of age. This study aims to assess the influence of age on apparent modulus, yield stress, and strength predictions of the human femoral neck made by laboratory-available bone volume fraction (BV/TV) and μFEA; and by clinically available DXA and hFEA. Using an inverse method, we test the hypothesis that FEA material parameters are independent of age. Eighty-six human femora were scanned with DXA (aBMD) and with QCT. The femoral necks were extracted and scanned at 16 μm resolution with μCT. The grayscale images were downscaled to 32 μm and 65 μm for linear and non-linear analyses, respectively, and segmented. The μFE solver ParOSolNL (non-linear) and a standard hFEA method were applied to the neck sections with the same material properties for all samples to compute apparent modulus, yield stress, and strength. Laboratory-available BV/TV was a good predictor of apparent modulus (R2 = 0.76), almost as good as μFEA (R2 = 0.79). However, yield stress and strength were better predicted by μFEA (R2 = 0.92, R2 = 0.86, resp.) than BV/TV (R2 = 0.76, R2 = 0.76, resp.). For clinically available variables, prediction of apparent modulus was better with hFEA than aBMD (R2 = 0.67, R2 = 0.58, resp.). hFEA outperformed aBMD for predictions of yield stress (R2 = 0.63 vs R2 = 0.34 for female and R2 = 0.55 for male) and strength (R2 = 0.48 vs R2 = 0.33 for female and R2 = 0.15 for male). The inclusion of age did not improve the multiple linear models for apparent modulus, yield stress, and strength. The resolution of the μFE meshes seems to account for most morphological changes induced by aging. The errors between the simulation and the experiment for apparent modulus, yield stress, and strength were age-independent, suggesting no rationale for correcting tissue material parameters in the current FE analysis of the aging femoral neck.
Keywords: Bone aging; Bone mechanical properties; Bone strength prediction; DXA; Femoral neck; Homogenized finite element; Micro finite element.
© 2022 Published by Elsevier Inc.
Conflict of interest statement
The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Dieter Pahr reports a relationship with Dr. Pahr Ingenieurs e.U. that includes: CEO and owner.
Figures




Similar articles
-
QCT-based finite element models predict human vertebral strength in vitro significantly better than simulated DEXA.Osteoporos Int. 2012 Feb;23(2):563-72. doi: 10.1007/s00198-011-1568-3. Epub 2011 Feb 23. Osteoporos Int. 2012. PMID: 21344244
-
A novel mechanical parameter to quantify the microarchitecture effect on apparent modulus of trabecular bone: A computational analysis of ineffective bone mass.Bone. 2020 Jun;135:115314. doi: 10.1016/j.bone.2020.115314. Epub 2020 Mar 8. Bone. 2020. PMID: 32156663
-
Are DXA/aBMD and QCT/FEA Stiffness and Strength Estimates Sensitive to Sex and Age?Ann Biomed Eng. 2017 Dec;45(12):2847-2856. doi: 10.1007/s10439-017-1914-5. Epub 2017 Sep 22. Ann Biomed Eng. 2017. PMID: 28940110 Free PMC article.
-
Are CT-Based Finite Element Model Predictions of Femoral Bone Strength Clinically Useful?Curr Osteoporos Rep. 2018 Jun;16(3):216-223. doi: 10.1007/s11914-018-0438-8. Curr Osteoporos Rep. 2018. PMID: 29656377 Free PMC article. Review.
-
Predicting bone strength from CT data: Clinical applications.Morphologie. 2019 Dec;103(343):180-186. doi: 10.1016/j.morpho.2019.09.007. Epub 2019 Oct 17. Morphologie. 2019. PMID: 31630964 Review.
References
LinkOut - more resources
Full Text Sources
Miscellaneous