Highly Symmetric, Self-Assembling 3D DNA Crystals with Cubic and Trigonal Lattices
- PMID: 36408817
- DOI: 10.1002/smll.202205830
Highly Symmetric, Self-Assembling 3D DNA Crystals with Cubic and Trigonal Lattices
Abstract
The rational design of nanoscopic DNA tiles has yielded highly ordered crystalline matter in 2D and 3D. The most well-studied 3D tile is the DNA tensegrity triangle, which is known to self-assemble into macroscopic crystals. However, contemporary rational design parameters for 3D DNA crystals nearly universally invoke integer numbers of DNA helical turns and Watson-Crick (WC) base pairs. In this study, 24-bp edges are substituted into a previously 21-bp (two helical turns of DNA) tensegrity triangle motif to explore whether such unconventional motif can self-assemble into 3D crystals. The use of noncanonical base pairs in the sticky ends results in a cubic arrangement of tensegrity triangles with exceedingly high symmetry, assembling a lattice from winding helical axes and diamond-like tessellation patterns. Reverting this motif to sticky ends with Watson-Crick pairs results in a trigonal hexagonal arrangement, replicating this diamond arrangement in a hexagonal context. These results showcase that the authors can generate unexpected, highly complex, pathways for materials design by testing modifications to 3D tiles without prior knowledge of the ensuing symmetry. This study expands the rational design toolbox for DNA nanotechnology; and it further illustrates the existence of yet-unexplored arrangements of crystalline soft matter.
Keywords: DNA structures; crystallography; nanostructures; self-assembled crystals.
© 2022 Wiley-VCH GmbH.
Similar articles
-
3D Hexagonal Arrangement of DNA Tensegrity Triangles.ACS Nano. 2021 Oct 26;15(10):16788-16793. doi: 10.1021/acsnano.1c06963. Epub 2021 Oct 5. ACS Nano. 2021. PMID: 34609128
-
Programmable 3D Hexagonal Geometry of DNA Tensegrity Triangles.Angew Chem Int Ed Engl. 2023 Feb 1;62(6):e202213451. doi: 10.1002/anie.202213451. Epub 2023 Jan 9. Angew Chem Int Ed Engl. 2023. PMID: 36520622
-
The Rule of Thirds: Controlling Junction Chirality and Polarity in 3D DNA Tiles.Small. 2023 Mar;19(12):e2206511. doi: 10.1002/smll.202206511. Epub 2022 Dec 30. Small. 2023. PMID: 36585389
-
The wending rhombus: Self-assembling 3D DNA crystals.Biophys J. 2022 Dec 20;121(24):4759-4765. doi: 10.1016/j.bpj.2022.08.019. Epub 2022 Aug 24. Biophys J. 2022. PMID: 36004779 Free PMC article. Review.
-
DNA Quadruple Helices in Nanotechnology.Chem Rev. 2019 May 22;119(10):6290-6325. doi: 10.1021/acs.chemrev.8b00629. Epub 2019 Jan 3. Chem Rev. 2019. PMID: 30605316 Review.
Cited by
-
Recent Advances in DNA Nanotechnology-Enabled Biosensors for Virus Detection.Biosensors (Basel). 2023 Aug 15;13(8):822. doi: 10.3390/bios13080822. Biosensors (Basel). 2023. PMID: 37622908 Free PMC article. Review.
-
Interplay of graphene-DNA interactions: Unveiling sensing potential of graphene materials.Appl Phys Rev. 2024 Mar;11(1):011306. doi: 10.1063/5.0171364. Epub 2024 Jan 26. Appl Phys Rev. 2024. PMID: 38784221 Free PMC article.
References
-
- N. C. Seeman, J. Theor. Biol. 1982, 99, 237.
-
- J. Zheng, J. J. Birktoft, Y. Chen, T. Wang, R. Sha, P. E. Constantinou, S. L. Ginell, C. Mao, N. C. Seeman, Nature 2009, 461, 74.
-
- T. J. Fu, N. C. Seeman, Biochemistry 1993, 32, 3211.
-
- N. C. Seeman, H. F. Sleiman, Nat. Rev. Mater. 2017, 3, 17068.
-
- a) J. H. Chen, N. C. Seeman, Nature 1991, 350, 631;
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources