TDP-43 condensates and lipid droplets regulate the reactivity of microglia and regeneration after traumatic brain injury
- PMID: 36424432
- DOI: 10.1038/s41593-022-01199-y
TDP-43 condensates and lipid droplets regulate the reactivity of microglia and regeneration after traumatic brain injury
Abstract
Decreasing the activation of pathology-activated microglia is crucial to prevent chronic inflammation and tissue scarring. In this study, we used a stab wound injury model in zebrafish and identified an injury-induced microglial state characterized by the accumulation of lipid droplets and TAR DNA-binding protein of 43 kDa (TDP-43)+ condensates. Granulin-mediated clearance of both lipid droplets and TDP-43+ condensates was necessary and sufficient to promote the return of microglia back to the basal state and achieve scarless regeneration. Moreover, in postmortem cortical brain tissues from patients with traumatic brain injury, the extent of microglial activation correlated with the accumulation of lipid droplets and TDP-43+ condensates. Together, our results reveal a mechanism required for restoring microglia to a nonactivated state after injury, which has potential for new therapeutic applications in humans.
© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.
Similar articles
-
Microglial depletion after brain injury prolongs inflammation and impairs brain repair, adult neurogenesis and pro-regenerative signaling.Glia. 2023 Nov;71(11):2642-2663. doi: 10.1002/glia.24444. Epub 2023 Jul 14. Glia. 2023. PMID: 37449457 Free PMC article.
-
Differential Expression Patterns of TDP-43 in Single Moderate versus Repetitive Mild Traumatic Brain Injury in Mice.Int J Mol Sci. 2021 Nov 11;22(22):12211. doi: 10.3390/ijms222212211. Int J Mol Sci. 2021. PMID: 34830093 Free PMC article.
-
Plaque-associated human microglia accumulate lipid droplets in a chimeric model of Alzheimer's disease.Mol Neurodegener. 2021 Jul 23;16(1):50. doi: 10.1186/s13024-021-00473-0. Mol Neurodegener. 2021. PMID: 34301296 Free PMC article.
-
Microglia as therapeutic targets after neurological injury: strategy for cell therapy.Expert Opin Ther Targets. 2021 May;25(5):365-380. doi: 10.1080/14728222.2021.1934447. Epub 2021 Jun 1. Expert Opin Ther Targets. 2021. PMID: 34029505 Free PMC article. Review.
-
Neuroinflammation, Microglia and Implications for Retinal Ganglion Cell Survival and Axon Regeneration in Traumatic Optic Neuropathy.Front Immunol. 2022 Mar 4;13:860070. doi: 10.3389/fimmu.2022.860070. eCollection 2022. Front Immunol. 2022. PMID: 35309305 Free PMC article. Review.
Cited by
-
Galectin-3 is upregulated in frontotemporal dementia patients with subtype specificity.Alzheimers Dement. 2024 Mar;20(3):1515-1526. doi: 10.1002/alz.13536. Epub 2023 Nov 29. Alzheimers Dement. 2024. PMID: 38018380 Free PMC article.
-
Microbiota-gut-liver-brain axis and hepatic encephalopathy.Microbiome Res Rep. 2024 Jan 25;3(2):17. doi: 10.20517/mrr.2023.44. eCollection 2024. Microbiome Res Rep. 2024. PMID: 38841407 Free PMC article. Review.
-
Microglia are essential for tissue contraction in wound closure after brain injury in zebrafish larvae.Life Sci Alliance. 2024 Oct 17;8(1):e202403052. doi: 10.26508/lsa.202403052. Print 2025 Jan. Life Sci Alliance. 2024. PMID: 39419547 Free PMC article.
-
Fishing Innate Immune System Properties through the Transcriptomic Single-Cell Data of Teleostei.Biology (Basel). 2023 Dec 12;12(12):1516. doi: 10.3390/biology12121516. Biology (Basel). 2023. PMID: 38132342 Free PMC article. Review.
-
Amyloid-β induces lipid droplet-mediated microglial dysfunction via the enzyme DGAT2 in Alzheimer's disease.Immunity. 2025 Jun 10;58(6):1536-1552.e8. doi: 10.1016/j.immuni.2025.04.029. Epub 2025 May 19. Immunity. 2025. PMID: 40393454
References
-
- Dimou, L. & Götz, M. Glial cells as progenitors and stem cells: new roles in the healthy and diseased brain. Physiol. Rev. 94, 709–737 (2014). - PubMed
-
- Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z. & Lindvall, O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med. 8, 963–970 (2002). - PubMed
-
- Thored, P. et al. Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells 24, 739–747 (2006). - PubMed
-
- Henriques, D., Moreira, R., Schwamborn, J., Pereira de Almeida, L. & Mendonça, L. S. Successes and hurdles in stem cells application and production for brain transplantation. Front. Neurosci. https://doi.org/10.3389/fnins.2019.01194 (2019).
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases