Dimerization induces bimodality in protein number distributions
- PMID: 36427705
- DOI: 10.1016/j.biosystems.2022.104812
Dimerization induces bimodality in protein number distributions
Abstract
We examined gene expression with DNA switching between two states, active and inactive. Subpopulations emerge from mechanisms that do not arise from trivial transcriptional heterogeneity. Although the RNA demonstrates a unimodal distribution, dimerization intriguingly causes protein bimodality. No control loop or deterministic bistability are present. In such a situation, increasing the degradation rate of the protein does not lead to bimodality. The bimodality is achieved through the interplay between the protein monomer and the formation of protein dimer. We applied Stochastic Simulation Algorithm (SSA) and found that cells spontaneously change states at the protein level. While sweeping parameters, decreasing the rate constant of dimerization severely impairs the bimodality. We also examined the influence of DNA switching. To have bimodality, the system requires a proper ratio of DNA in the active state to the inactive state. In addition to bimodality of the monomer, tetramerization also causes the bimodality of the dimer.
Keywords: Bistable toggle switches; Mathematic model; Transition probability.
Copyright © 2022 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials