Alteration of Gut Immunity and Microbiome in Mixed Granulocytic Asthma
- PMID: 36428515
- PMCID: PMC9687559
- DOI: 10.3390/biomedicines10112946
Alteration of Gut Immunity and Microbiome in Mixed Granulocytic Asthma
Abstract
Growing evidence suggests that there is an essential link between the gut and lungs. Asthma is a common chronic inflammatory disease and is considered a heterogeneous disease. While it has been documented that eosinophilic asthma affects gut immunity and the microbiome, the effect of other types of asthma on the gut environment has not been examined. In this study, we utilized an OVA/poly I:C-induced mixed granulocytic asthma model and found increased Tregs without significant changes in other inflammatory cells in the colon. Interestingly, an altered gut microbiome has been observed in a mixed granulocytic asthma model. We observed an increase in the relative abundance of the Faecalibaculum genus and Erysipelotrichaceae family, with a concomitant decrease in the relative abundance of the genera Candidatus arthromitus and Streptococcus. The altered gut microbiome leads to changes in the abundance of genes associated with microbial metabolism, such as glycolysis. We found that mixed granulocytic asthma mainly affects the gut microbial composition and metabolism, which may have important implications in the severity and development of asthma and gut immune homeostasis. This suggests that altered gut microbial metabolism may be a potential therapeutic target for patients with mixed granulocytic asthma.
Keywords: gut microbiota; intestinal immune cells; microbial metabolism; mixed granulocytic asthma.
Conflict of interest statement
The authors declare no competing financial interest.
Figures
References
-
- Soriano J.B., Abajobir A.A., Abate K.H., Abera S.F., Agrawal A., Ahmed M.B., Aichour A.N., Aichour I., Aichour M.T.E., Alam K., et al. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015, a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir. Med. 2017;5:691–706. doi: 10.1016/S2213-2600(17)30293-X. - DOI - PMC - PubMed
-
- Stark J.M., Godding V., Sedgwick J.B., Busse W.W. Respiratory syncytial virus infection enhances neutrophil and eosinophil adhesion to cultured respiratory epithelial cells. Roles of CD18 and intercellular adhesion molecule-1. J. Immunol. 1996;156:4774–4782. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
