Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Nov 14;23(22):14050.
doi: 10.3390/ijms232214050.

Intrinsically Disordered Proteins: An Overview

Affiliations
Review

Intrinsically Disordered Proteins: An Overview

Rakesh Trivedi et al. Int J Mol Sci. .

Abstract

Many proteins and protein segments cannot attain a single stable three-dimensional structure under physiological conditions; instead, they adopt multiple interconverting conformational states. Such intrinsically disordered proteins or protein segments are highly abundant across proteomes, and are involved in various effector functions. This review focuses on different aspects of disordered proteins and disordered protein regions, which form the basis of the so-called "Disorder-function paradigm" of proteins. Additionally, various experimental approaches and computational tools used for characterizing disordered regions in proteins are discussed. Finally, the role of disordered proteins in diseases and their utility as potential drug targets are explored.

Keywords: intrinsically disordered proteins; intrinsically disordered regions; protein function; protein structure.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The two paradigms of protein structure and function. According to the well-established ‘structure–function paradigm’, a three-dimensional native structure under physiological conditions is vital for a protein to perform its biological function (for example, enzyme-catalyzed reactions). The more recent ‘disorder–function paradigm’ states that a protein can carry out its biological function without attaining a 3-D stable folded structure under physiological conditions (for example, protein binding to other cellular molecules). For representative purpose, residues coding for ordered/globular domains are shown in ‘green’ color, and residues coding for disordered proteins/segments are shown in ‘red’. At the proteome level, the structured domains and intrinsically disordered regions (IDRs) are two functional building blocks of proteins.
Figure 2
Figure 2
Functional aspects of IDPs/IDRs. Intrinsically disordered proteins/regions’ functional classes and elements are described here. The functional class scheme describes eight different categories into which IDPs/IDRs can be grouped based on their biological function. The different functional classes include Entropic chains, Modification sites, Disordered chaperones, Molecular effectors, Molecular recognition assemblers, Molecular recognition scavengers, Metal sponges, and Unknown. IDPs/IDRs’ functions are mediated mainly through three types of structural elements, namely Short Linear Motifs (SLiMs), Molecular Recognition Features (MORFs), and Intrinsically Disordered Domains (IDDS).

References

    1. Babu M.M., Kriwacki R.W., Pappu R.V. Structural biology. Versatility from protein disorder. Science. 2012;337:1460–1461. doi: 10.1126/science.1228775. - DOI - PubMed
    1. Van der Lee R., Buljan M., Lang B., Weatheritt R.J., Daughdrill G.W., Dunker A.K., Fuxreiter M., Gough J., Gsponer J., Jones D.T., et al. Classification of intrinsically disordered regions and proteins. Chem. Rev. 2014;114:6589–6631. doi: 10.1021/cr400525m. - DOI - PMC - PubMed
    1. Luo Y., Ye S., Li X., Lu W. Emerging Structure-Function Paradigm of Endocrine FGFs in Metabolic Diseases. Trends Pharmacol. Sci. 2019;40:142–153. doi: 10.1016/j.tips.2018.12.002. - DOI - PubMed
    1. Lin D.H., Hoelz A. The Structure of the Nuclear Pore Complex (An Update) Annu. Rev. Biochem. 2019;88:725–783. doi: 10.1146/annurev-biochem-062917-011901. - DOI - PMC - PubMed
    1. Uversky V.N. Protein intrinsic disorder and structure-function continuum. Prog. Mol. Biol. Transl. Sci. 2019;166:1–17. - PubMed

MeSH terms

LinkOut - more resources