A sensitive multimode dot-filtration strip for the detection of Salmonella typhimurium using MoS2@Fe3O4
- PMID: 36434295
- DOI: 10.1007/s00604-022-05560-7
A sensitive multimode dot-filtration strip for the detection of Salmonella typhimurium using MoS2@Fe3O4
Abstract
A sensitive, accurate, and rapid multimode dot-filtration immunoassay (MDFIA) was established for the detection of Salmonella typhimurium using the intrinsic color, catalytic property, and photothermal effect of magnetic molybdenum disulphide (MoS2@Fe3O4). The critical performance parameters of MDFIA were optimized in detail. The sensitivity of MDFIA can be improved by the catalytic color development and photothermal conversion of MoS2@Fe3O4 with a limit of detection (LOD) of 101 CFU·mL-1, which is an order of magnitude lower than direct visual detection (102 CFU·mL-1). Besides, the magnetic property of MoS2@Fe3O4 was used for the rapid enrichment and separation of the target allowing detection of trace concentrations of Salmonella typhimurium. The selectivity and applicability of the MDFIA were verified in spiked samples, indicating that the established assay may have bright application prospects for the detection and control of foodborne pathogens. A multimode dot-filtration immunoassay was constructed for Salmonella typhimurium rapid detection based on the peroxidase-like activity, magnetic property, and photothermal effect of MoS2@Fe3O4.
Keywords: Catalysis; Colorimetry; MoS2@Fe3O4; Multimode dot-filtration immunoassay; Photothermal effect; Salmonella typhimurium.
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
Similar articles
-
Salmonella typhimurium detector based on the intrinsic peroxidase-like activity and photothermal effect of MoS2.Mikrochim Acta. 2020 Oct 23;187(11):627. doi: 10.1007/s00604-020-04600-4. Mikrochim Acta. 2020. PMID: 33095328
-
Magnetic Prussian blue nanoparticles to enhance dual-readout lateral flow immunoassay for Salmonella typhimurium detection.Anal Chim Acta. 2025 Apr 8;1346:343742. doi: 10.1016/j.aca.2025.343742. Epub 2025 Jan 31. Anal Chim Acta. 2025. PMID: 40021317
-
Colorimetric and photothermal dual-mode lateral flow immunoassay based on Au-Fe3O4 multifunctional nanoparticles for detection of Salmonella typhimurium.Mikrochim Acta. 2023 Jan 18;190(2):57. doi: 10.1007/s00604-023-05645-x. Mikrochim Acta. 2023. PMID: 36652031 Free PMC article.
-
Salmonella typhimurium strip based on the photothermal effect and catalytic color overlap of PB@Au nanocomposite.Food Chem. 2022 Aug 15;385:132649. doi: 10.1016/j.foodchem.2022.132649. Epub 2022 Mar 7. Food Chem. 2022. PMID: 35278735
-
Multifunctional Fe3O4@CuS nanoparticle-driven colorimetric and photothermal immunochromatographic test strip for the sensitive detection of Salmonella typhimurium in milk.Anal Chim Acta. 2024 Sep 22;1323:343091. doi: 10.1016/j.aca.2024.343091. Epub 2024 Aug 10. Anal Chim Acta. 2024. PMID: 39182977
Cited by
-
Review of Detection Limits for Various Techniques for Bacterial Detection in Food Samples.Nanomaterials (Basel). 2024 May 14;14(10):855. doi: 10.3390/nano14100855. Nanomaterials (Basel). 2024. PMID: 38786811 Free PMC article. Review.
-
Metal and metal oxide nanoparticle-assisted molecular assays for the detection of Salmonella.Discov Nano. 2025 Apr 2;20(1):65. doi: 10.1186/s11671-025-04237-3. Discov Nano. 2025. PMID: 40172753 Free PMC article. Review.
-
Multimodal Biosensing of Foodborne Pathogens.Int J Mol Sci. 2024 May 29;25(11):5959. doi: 10.3390/ijms25115959. Int J Mol Sci. 2024. PMID: 38892147 Free PMC article. Review.
-
Dual-Mode Biosensor for Simultaneous and Rapid Detection of Live and Whole Salmonella typhimurium Based on Bioluminescence and Fluorescence Detection.Biosensors (Basel). 2023 Mar 19;13(3):401. doi: 10.3390/bios13030401. Biosensors (Basel). 2023. PMID: 36979613 Free PMC article.
-
Overview of the Design and Application of Photothermal Immunoassays.Sensors (Basel). 2024 Oct 6;24(19):6458. doi: 10.3390/s24196458. Sensors (Basel). 2024. PMID: 39409498 Free PMC article. Review.
References
-
- Tack DM, Ray L, Griffin PM, Cieslak PR, Dunn J, Rissman T, Jervis R, Lathrop S, Muse A, Duwell M, Smith K, Tobin-D’Angelo M, Vugia DJ, Zablotsky KJ, Wolpert BJ, Tauxe R, Payne DC (2020) Preliminary incidence and trends of infections with pathogens transmitted commonly through food - foodborne diseases active surveillance network, 10 U.S. Sites, 2016–2019. MMWR Morb Mortal Wkly Rep 69:509–514. https://doi.org/10.15585/mmwr.mm6917a1 - DOI
-
- Khan S, McWhorter AR, Moyle TS, Chousalkar KK (2021) Refrigeration of eggs influences the virulence of Salmonella typhimurium. Sci Rep 11:18026. https://doi.org/10.1038/s41598-021-97135-4 - DOI
-
- Pancza B, Szathmáry M, Gyurján I, Bánkuti B, Tudós Z, Szathmary S, Stipkovits L, Sipos-Kozma Z, Ásványi B, Varga L, Szenthe K, Bánáti F (2021) A rapid and efficient DNA isolation method for qPCR-based detection of pathogenic and spoilage bacteria in milk. Food Control 130:108236. https://doi.org/10.1016/j.foodcont.2021.108236 - DOI
-
- Hou Y, Tang W, Qi W, Guo X, Lin J (2020) An ultrasensitive biosensor for fast detection of Salmonella using 3D magnetic grid separation and urease catalysis. Biosens Bioelectron 157:112160. https://doi.org/10.1016/j.bios.2020.112160 - DOI
-
- Ma M, Zhao J, Yan X, Zeng Z, Wan D, Yu P, Xia J, Zhang G, Gong D (2022) Synergistic effects of monocaprin and carvacrol against Escherichia coli O157:H7 and Salmonella typhimurium in chicken meat preservation. Food Control 132:108480. https://doi.org/10.1016/j.foodcont.2021.108480 - DOI