Characterisation of SARS-CoV-2 genomic variation in response to molnupiravir treatment in the AGILE Phase IIa clinical trial
- PMID: 36435798
- PMCID: PMC9701236
- DOI: 10.1038/s41467-022-34839-9
Characterisation of SARS-CoV-2 genomic variation in response to molnupiravir treatment in the AGILE Phase IIa clinical trial
Abstract
Molnupiravir is an antiviral, currently approved by the UK Medicines and Healthcare products Regulatory Agency (MHRA) for treating at-risk COVID-19 patients, that induces lethal error catastrophe in SARS-CoV-2. How this drug-induced mechanism of action might impact the emergence of resistance mutations is unclear. To investigate this, we used samples from the AGILE Candidate Specific Trial (CST)-2 (clinical trial number NCT04746183). The primary outcomes of AGILE CST-2 were to measure the drug safety and antiviral efficacy of molnupiravir in humans (180 participants randomised 1:1 with placebo). Here, we describe the pre-specified exploratory virological endpoint of CST-2, which was to determine the possible genomic changes in SARS-CoV-2 induced by molnupiravir treatment. We use high-throughput amplicon sequencing and minor variant analysis to characterise viral genomics in each participant whose longitudinal samples (days 1, 3 and 5 post-randomisation) pass the viral genomic quality criteria (n = 59 for molnupiravir and n = 65 for placebo). Over the course of treatment, no specific mutations were associated with molnupiravir treatment. We find that molnupiravir significantly increased the transition:transversion mutation ratio in SARS-CoV-2, consistent with the model of lethal error catastrophe. This study highlights the utility of examining intra-host virus populations to strengthen the prediction, and surveillance, of potential treatment-emergent adaptations.
© 2022. The Author(s).
Conflict of interest statement
SHK has received research funding from ViiV Healthcare and Merck for the Liverpool HIV Drug Interactions programme and for unrelated clinical studies. GG has received funding from Janssen-Cilag, AstraZeneca, Novartis, Astex, Roche, Heartflow, Celldex, BMS, BionTech, Cancer Research UK, the NIHR, the British Lung Foundation, Unitaid, and GSK for unrelated academic clinical trials and programme funding. WG has received funding from the Wellcome Trust. JP (Periselneris) has received honoraria for lectures from Gilead and London International Patient Services UK. JAH, ACD, MWC and TF have received research funding from the US Food and Drug Administration. TE has received unrelated research funding from the Medical Research Council, the Wellcome Trust, and Bloomsbury SET and travel grants from the European Society of Clinical Microbiology and Infectious Diseases. All other authors declare no competing interests.
Figures



References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous