Sustained delivery of CpG oligodeoxynucleotide by acetalated dextran microparticles augments effector response to Computationally Optimized Broadly Reactive Antigen (COBRA) influenza hemagglutinin
- PMID: 36436743
- PMCID: PMC9789738
- DOI: 10.1016/j.ijpharm.2022.122429
Sustained delivery of CpG oligodeoxynucleotide by acetalated dextran microparticles augments effector response to Computationally Optimized Broadly Reactive Antigen (COBRA) influenza hemagglutinin
Abstract
A subunit or protein-based influenza vaccine can be a safer alternative to live attenuated vaccine (Flumist) and require fewer boosts than an inactivated vaccine (e.g. Fluzone). However, to form an effective subunit vaccine, an adjuvant is often needed. In this work we used electrospray to encapsulate the hydrophilic adjuvant CpG into microparticles made from the hydrophobic biodegradable polymer acetalated dextran. To understand the rate of particle degradation on CpG release, polymer that was slow (21 h at phagosomal pH 5) and fast (0.25 h at pH 5) degrading was used to encapsulate the adjuvant. The slow-degrading particles exhibited the greatest degree of innate immune stimulation of antigen-presenting cells in vitro. In mice, the broadly acting Computationally Optimized Broadly Reactive Antigen (COBRA) Y2 influenza hemagglutinin (HA) antigen was used with CpG particles, soluble CpG, or MF-59 like adjuvant Addavax. Particles and soluble CpG elicited similar induction of anti-HA antibodies and protection against lethal influenza challenge, but the sustained release particles elicited the highest levels antibody effector functions. These results demonstrate a suitable method for encapsulation of CpG oligonucleotide in a hydrophobic particle matrix, and suggest that sustained release of CpG from Ace-DEX microparticles could potentially be used to induce potent antibody effector functions.
Keywords: Intramuscular injection; Nanoparticle vaccine; Seasonal influenza vaccine; Tunable degradation; Universal influenza vaccine.
Copyright © 2022 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Figures
References
-
- Belongia EA, Simpson MD, King JP, Sundaram ME, Kelley NS, Osterholm MT, McLean HQ, 2016. Variable influenza vaccine effectiveness by subtype: a systematic review and meta-analysis of test-negative design studies. Lancet Infect Dis 16, 942–951. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous
