Efficient multitool/multiplex gene engineering with TALE-BE
- PMID: 36440442
- PMCID: PMC9684181
- DOI: 10.3389/fbioe.2022.1033669
Efficient multitool/multiplex gene engineering with TALE-BE
Abstract
TALE base editors are a recent addition to the genome editing toolbox. These molecular tools are fusions of a transcription activator-like effector domain (TALE), split-DddA deaminase halves, and an uracil glycosylase inhibitor (UGI) that have the distinct ability to directly edit double strand DNA, converting a cytosine (C) to a thymine (T). To dissect the editing rules of TALE-BE, we combined the screening of dozens of TALE-BE targeting nuclear genomic loci with a medium/high throughput strategy based on precise knock-in of TALE-BE target site collections into the cell genome. This latter approach allowed us to gain in depth insight of the editing rules in cellulo, while excluding confounding factors such as epigenetic and microenvironmental differences among different genomic loci. Using the knowledge gained, we designed TALE-BE targeting CD52 and achieved very high frequency of gene knock-out (up to 80% of phenotypic CD52 knock out). We further demonstrated that TALE-BE generate only insignificant levels of Indels and byproducts. Finally, we combined two molecular tools, a TALE-BE and a TALEN, for multiplex genome engineering, generating high levels of double gene knock-out (∼75%) without creation of translocations between the two targeted sites.
Keywords: TALE; base editors; cell engineering; gene editing; t-cells.
Copyright © 2022 Boyne, Yang, Pulicani, Feola, Tkach, Hong, Duclert, Duchateau and Juillerat.
Conflict of interest statement
AB, MY, SP, MF, DT, RH, AD, PD, and AJ are currently employed by the company Cellectis or former employees of the company Cellectis.
Figures
References
-
- Alanis-Lobato G., Zohren J., McCarthy A., Fogarty N. M. E., Kubikova N., Hardman E., et al. (2021). Frequent loss of heterozygosity in CRISPR-Cas9-edited early human embryos. Proc. Natl. Acad. Sci. U. S. A. 118, e2004832117. 10.1073/pnas.2004832117 PubMed Abstract | 10.1073/pnas.2004832117 | Google Scholar - DOI - DOI - PMC - PubMed
-
- Amit I., Iancu O., Levy-Jurgenson A., Kurgan G., McNeill M. S., Rettig G. R., et al. (2021). CRISPECTOR provides accurate estimation of genome editing translocation and off-target activity from comparative NGS data. Nat. Commun. 12, 3042. 10.1038/s41467-021-22417-4 PubMed Abstract | 10.1038/s41467-021-22417-4 | Google Scholar - DOI - DOI - PMC - PubMed
-
- Anzalone A. V., Koblan L. W., Liu D. R. (2020). Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844. 10.1038/s41587-020-0561-9 PubMed Abstract | 10.1038/s41587-020-0561-9 | Google Scholar - DOI - DOI - PubMed
-
- Bose S. K., White B. M., Kashyap M. V., Dave A., De Bie F. R., Li H., et al. (2021). In utero adenine base editing corrects multi-organ pathology in a lethal lysosomal storage disease. Nat. Commun. 12, 4291–4316. 10.1038/s41467-021-24443-8 PubMed Abstract | 10.1038/s41467-021-24443-8 | Google Scholar - DOI - DOI - PMC - PubMed
-
- Boutin J., Cappellen D., Rosier J., Amintas S., Dabernat S., Bedel A., et al. (2022). ON-target adverse events of CRISPR-cas9 nuclease: More chaotic than expected. Cris. J. 5, 19–30. 10.1089/crispr.2021.0120 10.1089/crispr.2021.0120 | Google Scholar - DOI - DOI - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources
