Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Dec 14;22(23):9313-9318.
doi: 10.1021/acs.nanolett.2c02893. Epub 2022 Nov 28.

One-Lead Single-Electron Source with Charging Energy

Affiliations

One-Lead Single-Electron Source with Charging Energy

Sung Un Cho et al. Nano Lett. .

Abstract

Single-electron sources, formed by a quantum dot (QD), are key elements for realizing electron analogue of quantum optics. We develop a new type of single-electron source with functionalities that are absent in existing sources. This source couples with only one lead. By an AC rf drive, it successively emits holes and electrons cotraveling in the lead, as in the mesoscopic capacitor. Thanks to the considerable charging energy of the QD, however, emitted electrons have energy levels a few tens of millielectronvolts above the Fermi level, so that emitted holes and electrons are split by a potential barrier on demand, resulting in a rectified quantized current. The resulting pump map exhibits quantized triangular islands, in good agreement with our theory. We also demonstrate that the source can be operated with another tunable-barrier single-electron source in a series double QD geometry, showing parallel electron pumping by a common gate driving.

Keywords: electron quantum optics; electron−hole splitter; parallel electron pumping; single-electron source.

PubMed Disclaimer

LinkOut - more resources