Effect of GR24 concentrations on tetracycline and nutrient removal from biogas slurry by different microalgae-based technologies
- PMID: 36442601
- DOI: 10.1016/j.biortech.2022.128400
Effect of GR24 concentrations on tetracycline and nutrient removal from biogas slurry by different microalgae-based technologies
Abstract
A biogas slurry composed of carbon, nitrogen, phosphorus, and antibiotics was generated. Investigations into the nutrient and tetracycline removal performance of four microalgae-based contaminant removal technologies, including Chlorella vulgaris, C. vulgaris co-cultured with endophytic bacteria, C. vulgaris co-cultured with Ganoderma lucidum, and C. vulgaris co-cultured with G. lucidum and endophytic bacteria, were conducted. The algal-bacterial-fungal consortium with 10-9 M strigolactone (GR24) yielded the maximum growth rate and average daily yield for algae at 0.325 ± 0.03 d-1 and 0.192 ± 0.02 g L-1 d-1, respectively. The highest nutrient/ tetracycline removal efficiencies were 83.28 ± 7.95 % for chemical oxygen demand (COD), 82.62 ± 7.97 % for total nitrogen (TN), 85.15 ± 8.26 % for total phosphorus (TP) and 83.92 ± 7.65 % for tetracycline. Adding an algal-bacterial-fungal consortium with an optimal synthetic analog GR24 concentration is seemingly an encouraging strategy for enhancing pollutant removal by algae, possibly overcoming the challenges of eutrophication and antibiotic pollution.
Keywords: Co-cultivation; Endophytic bacteria; Growth rate; Photosynthetic performance; Removal efficiency.
Copyright © 2022 Elsevier Ltd. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
