A critical thermal transition driving spring phenology of Northern Hemisphere conifers
- PMID: 36451586
- DOI: 10.1111/gcb.16543
A critical thermal transition driving spring phenology of Northern Hemisphere conifers
Abstract
Despite growing interest in predicting plant phenological shifts, advanced spring phenology by global climate change remains debated. Evidence documenting either small or large advancement of spring phenology to rising temperature over the spatio-temporal scales implies a potential existence of a thermal threshold in the responses of forests to global warming. We collected a unique data set of xylem cell-wall-thickening onset dates in 20 coniferous species covering a broad mean annual temperature (MAT) gradient (-3.05 to 22.9°C) across the Northern Hemisphere (latitudes 23°-66° N). Along the MAT gradient, we identified a threshold temperature (using segmented regression) of 4.9 ± 1.1°C, above which the response of xylem phenology to rising temperatures significantly decline. This threshold separates the Northern Hemisphere conifers into cold and warm thermal niches, with MAT and spring forcing being the primary drivers for the onset dates (estimated by linear and Bayesian mixed-effect models), respectively. The identified thermal threshold should be integrated into the Earth-System-Models for a better understanding of spring phenology in response to global warming and an improved prediction of global climate-carbon feedbacks.
Keywords: Northern Hemisphere conifer; cell wall thickening; photoperiod; spring forcing; winter chilling; xylem phenology.
© 2022 John Wiley & Sons Ltd.
References
REFERENCES
-
- Abe, H., Funada, R., Ohtani, J., & Fukazawa, K. (1997). Changes in the arrangement of cellulose microfibrils associated with the cessation of cell expansion in tracheids. Trees, 11(6), 328-332.
-
- Antonucci, S., Rossi, S., Deslauriers, A., Lombardi, F., Marchetti, M., & Tognetti, R. (2015). Synchronisms and correlations of spring phenology between apical and lateral meristems in two boreal conifers. Tree Physiology, 35(10), 1086-1094.
-
- Asse, D., Chuine, I., Vitasse, Y., Yoccoz, N. G., Delpierre, N., Badeau, V., Delestrade, A., & Randin, C. F. (2018). Warmer winters reduce the advance of tree spring phenology induced by warmer springs in the Alps. Agricultural and Forest Meteorology, 252, 220-230.
-
- Balting, D. F., AghaKouchak, A., Lohmann, G., & Ionita, M. (2021). Northern hemisphere drought risk in a warming climate. NPJ Climate and Atmospheric Science, 4, 61.
-
- Basler, D., & Körner, C. (2012). Photoperiod sensitivity of bud burst in 14 temperate forest tree species. Agricultural and Forest Meteorology, 165, 73-81.
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources