Advanced technologies for quantum photonic devices based on epitaxial quantum dots
- PMID: 36452403
- PMCID: PMC9706462
- DOI: 10.1002/qute.201900034
Advanced technologies for quantum photonic devices based on epitaxial quantum dots
Abstract
Quantum photonic devices are candidates for realizing practical quantum computers and networks. The development of integrated quantum photonic devices can greatly benefit from the ability to incorporate different types of materials with complementary, superior optical or electrical properties on a single chip. Semiconductor quantum dots (QDs) serve as a core element in the emerging modern photonic quantum technologies by allowing on-demand generation of single-photons and entangled photon pairs. During each excitation cycle, there is one and only one emitted photon or photon pair. QD photonic devices are on the verge of unfolding for advanced quantum technology applications. In this review, we focus on the latest significant progress of QD photonic devices. We first discuss advanced technologies in QD growth, with special attention to droplet epitaxy and site-controlled QDs. Then we overview the wavelength engineering of QDs via strain tuning and quantum frequency conversion techniques. We extend our discussion to advanced optical excitation techniques recently developed for achieving the desired emission properties of QDs. Finally, the advances in heterogeneous integration of active quantum light-emitting devices and passive integrated photonic circuits are reviewed, in the context of realizing scalable quantum information processing chips.
Keywords: epitaxial growth technology; heterogeneous photonic integration; quantum dot; quantum photonic device; wavelength tuning.
Figures















Similar articles
-
On-chip generation and dynamic piezo-optomechanical rotation of single photons.Nat Commun. 2022 Nov 16;13(1):6998. doi: 10.1038/s41467-022-34372-9. Nat Commun. 2022. PMID: 36384915 Free PMC article.
-
Generation of Polarization-Entangled Photons from Self-Assembled Quantum Dots in a Hybrid Quantum Photonic Chip.Nano Lett. 2022 Jan 26;22(2):586-593. doi: 10.1021/acs.nanolett.1c03226. Epub 2022 Jan 13. Nano Lett. 2022. PMID: 35025517
-
Single Quantum Dot Selection and Tailor-Made Photonic Device Integration using a Nanoscale-Focus Pinspot.Adv Mater. 2023 Jun;35(26):e2210667. doi: 10.1002/adma.202210667. Epub 2023 May 5. Adv Mater. 2023. PMID: 36946467
-
Droplet epitaxy of semiconductor nanostructures for quantum photonic devices.Nat Mater. 2019 Aug;18(8):799-810. doi: 10.1038/s41563-019-0355-y. Epub 2019 May 13. Nat Mater. 2019. PMID: 31086322 Review.
-
Integration of Colloidal Quantum Dots with Photonic Structures for Optoelectronic and Optical Devices.Adv Sci (Weinh). 2021 Sep;8(18):e2101560. doi: 10.1002/advs.202101560. Epub 2021 Jul 28. Adv Sci (Weinh). 2021. PMID: 34319002 Free PMC article. Review.
Cited by
-
Optical and electronic spin properties of fluorescent micro- and nanodiamonds upon prolonged ultrahigh-temperature annealing.J Vac Sci Technol B Nanotechnol Microelectron. 2023 Jul;41(4):042206. doi: 10.1116/6.0002797. Epub 2023 Jun 27. J Vac Sci Technol B Nanotechnol Microelectron. 2023. PMID: 37387792 Free PMC article.
-
Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin-photon interface.Beilstein J Nanotechnol. 2020 May 8;11:740-769. doi: 10.3762/bjnano.11.61. eCollection 2020. Beilstein J Nanotechnol. 2020. PMID: 32461875 Free PMC article. Review.
References
-
- O’Brien JL, Furusawa A, Vučkovič J, Nat. Photonics 2009, 3, 687.
-
- Knill E, Laflamme R, Milburn GJ, Nature 2001, 409, 46. - PubMed
-
- O’Brien JL, Science 2007, 318, 1567. - PubMed
-
- Gisin N, Thew R, Nat. Photonics 2007, 1, 165.
-
- Schmitt-Manderbach T, Weier H, Fürst M, Ursin R, Tiefenbacher F, Scheidl T, Perdigues J, Sodnik Z, Kurtsiefer C, Rarity JG, Zeilinger A, Weinfurter H, Phys. Rev. Lett 2007, 98, 010504. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources