Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Feb 20:860:160508.
doi: 10.1016/j.scitotenv.2022.160508. Epub 2022 Nov 28.

Impact of different roofing mitigation strategies on near-surface temperature and energy consumption over the Chicago metropolitan area during a heatwave event

Affiliations
Free article

Impact of different roofing mitigation strategies on near-surface temperature and energy consumption over the Chicago metropolitan area during a heatwave event

Haochen Tan et al. Sci Total Environ. .
Free article

Abstract

This study examined the impact of cool roofs, green roofs, and solar panel roofs on near-surface temperature and cooling energy demand through regional modeling in the Chicago metropolitan area (CMA). The new parameterization of green roofs and solar panel roofs based on model physics has recently been developed, updated, and coupled to a multilayer building energy model that is fully integrated with the Weather Research and Forecasting model. We evaluate the model performance against with observation measurements to show that our model is capable of being a suited tool to simulate the heatwave event. Next, we examine the impact by characterizing the near-surface air temperature and its diurnal cycle from experiments with and without the different rooftops. We also estimate the impact of the rooftop on the urban island intensity (UHII), surface heat flux, and the boundary layer. Finally, we measure the impact of the different rooftops on citywide air-conditioning consumption. Results show that the deployment of the cool roof can reduce the near-surface temperature most over urban areas, followed by green roof and solar panel roof. The cool roof experiment was the only one where the near-surface temperature trended down as the urban fraction increased, indicating the cool roof is the most effective mitigation strategy among these three rooftop options. For cooling energy consumption, it can be reduced by 16.6 %, 14.0 %, and 7.6 %, when cool roofs, green roofs, and solar panel roofs are deployed, respectively. Although solar panel roofs show the smallest reduction in energy consumption, if we assume that all electricity production can be applied to cooling demand, we can expect almost a savings of almost half (46.7 %) on cooling energy demand.

Keywords: Cooling energy demand; Heatwave; Rooftops; Urban climate modeling.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

LinkOut - more resources