Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jan 15:156:37-48.
doi: 10.1016/j.actbio.2022.11.047. Epub 2022 Nov 29.

Injectable decellularized dental pulp matrix-functionalized hydrogel microspheres for endodontic regeneration

Affiliations

Injectable decellularized dental pulp matrix-functionalized hydrogel microspheres for endodontic regeneration

Liwen Zheng et al. Acta Biomater. .

Abstract

The sufficient imitation of tissue structures and components represents an effective and promising approach for tissue engineering and regenerative medicine applications. Dental pulp disease is one of the most common oral diseases, although functional pulp regeneration remains challenging. Herein, we propose a strategy that employs hydrogel microspheres incorporated with decellularized dental pulp matrix-derived bioactive factors to simulate a pulp-specific three-dimensional (3D) microenvironment. The dental pulp microenvironment-specific microspheres constructed by this regenerative strategy exhibited favorable plasticity, biocompatibility, and biological performances. Human dental pulp stem cells (hDPSCs) cultured on the constructed microspheres exhibited enhanced pulp-formation ability in vitro. Furthermore, the hDPSCs-microcarriers achieved the regeneration of pulp-like tissue and new dentin in a semi-orthotopic model in vivo. Mechanistically, the decellularized pulp matrix-derived bioactive factors mediated the multi-directional differentiation of hDPSCs to regenerate the pulp tissue by eliciting the secretion of crucial bioactive cues. Our findings demonstrated that a 3D dental pulp-specific microenvironment facilitated by hydrogel microspheres and dental pulp-specific bioactive factors regenerated the pulp-dentin complex and could be served as a promising treatment option for dental pulp disease. STATEMENT OF SIGNIFICANCE: Injectable bioscaffolds are increasingly used for regenerative endodontic treatment. Despite their success related to their ability to load stem cells, bioactive factors, and injectability, conventional bulk bioscaffolds have drawbacks such as ischemic necrosis in the central region. Various studies have shown that ischemic necrosis in the central region can be corrected by injectable hydrogel microspheres. Unfortunately, pristine microspheres or microspheres without dental pulp-specific bioactive factor would oftentimes fail to regulate stem cells fates in dental pulp multi-directional differentiation. Our present study reported the biofabrication of dental pulp-derived decellularized matrix functionalized gelatin microspheres, which contained dental pulp-specific bioactive factors and have the potential application in endodontic regeneration.

Keywords: Decellularized matrix; Dental pulp; Endodontic regeneration; Hydrogel microspheres.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

Publication types

LinkOut - more resources