Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Dec 1;21(1):361.
doi: 10.1186/s12936-022-04383-4.

Performance of antigen detection for HRP2-based malaria rapid diagnostic tests in community surveys: Tanzania, July-November 2017

Affiliations

Performance of antigen detection for HRP2-based malaria rapid diagnostic tests in community surveys: Tanzania, July-November 2017

Eric Rogier et al. Malar J. .

Abstract

Background: Malaria rapid diagnostic tests (RDTs) based on the detection of the Plasmodium falciparum histidine-rich protein 2 (HRP2) antigen are widely used for detection of active infection with this parasite and are the only practical malaria diagnostic test in some endemic settings. External validation of RDT results from field surveys can confirm appropriate RDT performance.

Methods: A community-based cross-sectional survey was conducted between July and November 2017 enrolling participants of all ages in households from 15 villages in four border regions of Tanzania: Geita, Kigoma, Mtwara and Ruvuma. All participants had an RDT performed in the field and provided a blood sample for later laboratory multiplex antigen detection of HRP2. In assessing the continuous HRP2 levels in participant blood versus RDT result, dose-response logistic regression provided quantitative estimates for HRP2 limit of detection (LOD).

Results: From the 15 study villages, 6941 persons were enrolled that had a RDT at time of enrollment and provided a DBS for later laboratory antigen detection. RDT positive prevalence for the HRP2 band by village ranged from 20.0 to 43.6%, but the magnitude of this prevalence did not have an effect on the estimated LOD of RDTs utilized in different villages. Overall, HRP2 single-target tests had a lower LOD at the 95% probability of positive RDT (4.3 ng/mL; 95% CI 3.4-5.4) when compared to pLDH/HRP2 dual target tests (5.4 ng/mL; 4.5-6.3), though this difference was not significant. With the exception of one village, all other 14 villages (93.3%) showed RDT LOD estimates at 90% probability of positive RDT between 0.5 and 12.0 ng/mL.

Conclusions: Both HRP2-only and pLDH/HRP2 combo RDTs utilized in a 2017 Tanzania cross-sectional survey of border regions generally performed well, and reliably detected HRP2 antigen in the low ng/mL range. Though single target tests had lower levels of HRP2 detection, both tests were within similar ranges among the 15 villages. Comparison of quantitative HRP2 detection limits among study sites can help interpret RDT testing results when generating population prevalence estimates for malaria infection.

Keywords: Histidine-rich protein 2; Limit of detection Plasmodium falciparum; Malaria; Rapid diagnostic tests; Tanzania.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Map showing the study sites—Tanzania cross-sectional survey: July–November 2017. Districts included in this study shaded, and villages for participant enrollment indicated by blue points on the map
Fig. 2
Fig. 2
Dose–response logistic and LOESS curves for all sites utilizing either single-target or dual-target RDTs. Comparison of parametric logistic curves between the single-target HRP2-RDT (red dots and red line) and dual-target HRP2/pLDH-RDT (blue dots and blue line) used in this study. Shading on logistic curves indicates 95% confidence limits
Fig. 3
Fig. 3
Modelling for RDT detection of HRP2 antigen by village: Tanzania HotSpot study, 2017. Squares represent HRP2 concentration point estimates for 50% (black) and 90% (red) rates of RDT positivity with bars indicating 95% confidence intervals

References

    1. WHO . World Malaria Report. Geneva: World Health Organization; 2020.
    1. Ishengoma DS, Francis F, Mmbando BP, Lusingu JP, Magistrado P, Alifrangis M, et al. Accuracy of malaria rapid diagnostic tests in community studies and their impact on treatment of malaria in an area with declining malaria burden in north-eastern Tanzania. Malar J. 2011;10:176. doi: 10.1186/1475-2875-10-176. - DOI - PMC - PubMed
    1. US. President’s malaria initiative Tanzania Malaria operational plan FY 2020. Dar es Salaam, Tanzania, 2020. https://www.pmi.gov/where-we-work/tanzania/
    1. US. President’s malaria initiative. Tanzania. Tanzania fact sheet 2020. https://www.pmi.gov/where-we-work/tanzania/
    1. Chacky F, Runge M, Rumisha SF, Machafuko P, Chaki P, Massaga JJ, et al. Nationwide school malaria parasitaemia survey in public primary schools, the United Republic of Tanzania. Malar J. 2018;17:452. doi: 10.1186/s12936-018-2601-1. - DOI - PMC - PubMed