Deep learning-based detection of functionally significant stenosis in coronary CT angiography
- PMID: 36457806
- PMCID: PMC9705580
- DOI: 10.3389/fcvm.2022.964355
Deep learning-based detection of functionally significant stenosis in coronary CT angiography
Abstract
Patients with intermediate anatomical degree of coronary artery stenosis require determination of its functional significance. Currently, the reference standard for determining the functional significance of a stenosis is invasive measurement of the fractional flow reserve (FFR), which is associated with high cost and patient burden. To address these drawbacks, FFR can be predicted non-invasively from a coronary CT angiography (CCTA) scan. Hence, we propose a deep learning method for predicting the invasively measured FFR of an artery using a CCTA scan. The study includes CCTA scans of 569 patients from three hospitals. As reference for the functional significance of stenosis, FFR was measured in 514 arteries in 369 patients, and in the remaining 200 patients, obstructive coronary artery disease was ruled out by Coronary Artery Disease-Reporting and Data System (CAD-RADS) category 0 or 1. For prediction, the coronary tree is first extracted and used to reconstruct an MPR for the artery at hand. Thereafter, the coronary artery is characterized by its lumen, its attenuation and the area of the coronary artery calcium in each artery cross-section extracted from the MPR using a CNN. Additionally, characteristics indicating the presence of bifurcations and information indicating whether the artery is a main branch or a side-branch of a main artery are derived from the coronary artery tree. All characteristics are fed to a second network that predicts the FFR value and classifies the presence of functionally significant stenosis. The final result is obtained by merging the two predictions. Performance of our method is evaluated on held out test sets from multiple centers and vendors. The method achieves an area under the receiver operating characteristics curve (AUC) of 0.78, outperforming other works that do not require manual correction of the segmentation of the artery. This demonstrates that our method may reduce the number of patients that unnecessarily undergo invasive measurements.
Keywords: convolutional neural networks; coronary artery tree; coronary computed tomography angiography; fractional flow reserve; transformer.
Copyright © 2022 Hampe, van Velzen, Planken, Henriques, Collet, Aben, Voskuil, Leiner and Išgum.
Conflict of interest statement
Author CC reports receiving institutional research grants from GE Healthcare, Siemens, Insight Lifetech, Coroventis Research, Medis Medical Imaging, Pie Medical Imaging, CathWorks, Boston Scientific, HeartFlow, Abbott Vascular, and consultancy fees from HeartFlow, Abbott Vascular, and Cryotherapeutics. Author II reports institutional research grants by Pie Medical Imaging, Dutch Technology Foundation with participation of Pie Medical Imaging and Philips Healthcare (DLMedIA P15-26). Author J-PA was employed by Pie Medical Imaging BV. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Figures







References
-
- Roth GA, Abate D, Abate KH, Abay SM, Abbafati. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. (2018) 392:1736–88. 10.1016/S0140-6736(17)32152-9 - DOI - PMC - PubMed
-
- Pijls NHJ, Fearon WF, Tonino PAL, Siebert U, Ikeno F, Bornschein B, et al. . Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional flow reserve versus angiography for Multivessel Evaluation) study. J Am Coll Cardiol. (2010) 56:177–84. 10.1016/j.jacc.2010.04.012 - DOI - PubMed
-
- Meijboom WB, Van Mieghem CAG, van Pelt N, Weustink A, Pugliese F, Mollet NR, et al. . Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol. (2008) 52:636–43. 10.1016/j.jacc.2008.05.024 - DOI - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous