Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Nov 21;8(11):e11786.
doi: 10.1016/j.heliyon.2022.e11786. eCollection 2022 Nov.

Melatonin receptor 1B gene rs10830963 C/G polymorphism associated with type 2 diabetes mellitus: An updated meta-analysis of 13,752 participants

Affiliations

Melatonin receptor 1B gene rs10830963 C/G polymorphism associated with type 2 diabetes mellitus: An updated meta-analysis of 13,752 participants

Yan-Yan Li et al. Heliyon. .

Abstract

Background and aims: It has been indicated that Melatonin receptor 1B (MTNR1B) gene rs10830963 C/G polymorphism was associated with the increased type 2 diabetes mellitus (T2DM) risk. Nevertheless, due to the inconsistent results among the individual studies on this topic, no consensus has been reached now. Hence, the present meta-analysis was conducted to illuminate the potential association of human MTNR1B gene rs10830963 C/G polymorphism and T2DM.

Methods and results: There were 13,752 participants from 7 studies in the present meta-analysis. The pooled odds ratios (ORs) and their corresponding 95% confidence intervals (CIs) were assessed by using the fixed or random effects models. A significant association between MTNR1B gene rs10830963 C/G polymorphism and T2DM was found under recessive (OR: 1.148, 95% CI: 1.052-1.253, P = 0.002), homozygous (OR: 1.197, 95% CI: 1.023-1.401, P = 0.025), and additive (OR: 1.067, 95% CI: 1.017-1.120, P = 0.008) genetic models.

Conclusions: MTNR1B gene rs10830963 C/G polymorphism was significantly related to T2DM in the Chinese population. The persons with G allele of the MTNRB1 gene rs10830963 C/G polymorphism might be the T2DM susceptible population.

Keywords: Genetic; MTNR1B; Polymorphism; Type 2 diabetes mellitus; rs10830963.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Forest plot of T2DM associated with MTNR1B gene rs10830963 C/G polymorphism under an allelic genetic model (i.e. G allele vs. G allele + C allele of MTNR1B gene rs10830963 C/G polymorphism).
Figure 2
Figure 2
Forest plot of T2DM associated with MTNR1B gene rs10830963 C/G polymorphism under a recessive genetic model (i.e. GG VS. CC + CG of MTNR1B gene rs10830963 C/G polymorphism).
Figure 3
Figure 3
Forest plot of T2DM associated with MTNR1B gene rs10830963 C/G polymorphism under a dominant genetic model (i.e. CC VS. GG + CG of MTNR1B gene rs10830963 C/G polymorphism).
Figure 4
Figure 4
Forest plot of T2DM associated with MTNR1B gene rs10830963 C/G polymorphism under a heterozygous genetic model (i.e., CG vs. CC of MTNR1B gene rs10830963 C/G polymorphism).
Figure 5
Figure 5
Forest plot of T2DM associated with MTNR1B gene rs10830963 C/G polymorphism under a homozygous genetic model (i.e., GG vs. CC of MTNR1B gene rs10830963 C/G polymorphism).
Figure 6
Figure 6
Forest plot of T2DM associated with MTNR1B gene rs10830963 C/G polymorphism under an additive genetic model (i.e., G allele vs. C allele of MTNR1B gene rs10830963 C/G polymorphism).
Figure 7
Figure 7
The funnel plot for studies of the association of T2DM and MTNR1B gene rs10830963 C/G polymorphism under a recessive genetic model (i.e. GG VS.CC + CG of MTNR1B gene rs10830963 C/G polymorphism). The horizontal and vertical axes correspond to the OR on log scale and SE (logOR), respectively. OR: odds ratio; SE: standard error.
Figure 8
Figure 8
The Begg's funnel plot for studies of the association of T2DM and MTNR1B gene rs10830963 C/G polymorphism under an additive genetic model (i.e., G allele vs. C allele of MTNR1B gene rs10830963 C/G polymorphism). The horizontal and vertical axes correspond to the OR on log scale and SE (logOR), respectively. OR: odds ratio; SE: standard error.
Figure 9
Figure 9
The sensitivity analysis on the association of T2DM and MTNR1B gene rs10830963 C/G polymorphism under an additive genetic model (i.e., G allele vs. C allele of MTNR1B gene rs10830963 C/G polymorphism).

References

    1. Li Y., Teng D., Shi X., Qin G., Qin Y., Quan H., Shi B., Sun H., Ba J., Chen B., Du J., He L., Lai X., Li Y., Chi H., Liao E., Liu C., Liu L., Tang X., Tong N., Wang G., Zhang J.A., Wang Y., Xue Y., Yan L., Yang J., Yang L., Yao Y., Ye Z., Zhang Q., Zhang L., Zhu J., Zhu M., Ning G., Mu Y., Zhao J., Teng W., Shan Z. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study. BMJ. 2020;369:m997. - PMC - PubMed
    1. Kvetnoy I.M. Extrapineal melatonin: location and role within diffuse neuroendocrine system. Histochem. J. 1999;31:1–12. - PubMed
    1. Reppert S.M., Godson C., Mahle C.D., Weaver D.R., Slaugenhaupt S.A., Gusella J.F. Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor. Proc Natl AcadSci U S A. 1995;92:8734–8738. - PMC - PubMed
    1. Prokopenko I., Langenberg C., Florez J.C., Saxena R., Soranzo N., Thorleifsson G., Loos R.J., Manning A.K., Jackson A.U., Aulchenko Y., Potter S.C., Erdos M.R., Sanna S., Hottenga J.J., Wheeler E., Kaakinen M., Lyssenko V., Chen W.M., Ahmadi K., Beckmann J.S., Bergman R.N., Bochud M., Bonnycastle L.L., Buchanan T.A., Cao A., Cervino A., Coin L., Collins F.S., Crisponi L., de Geus E.J., Dehghan A., Deloukas P., Doney A.S., Elliott P., Freimer N., Gateva V., Herder C., Hofman A., Hughes T.E., Hunt S., Illig T., Inouye M., Isomaa B., Johnson T., Kong A., Krestyaninova M., Kuusisto J., Laakso M., Lim N., Lindblad U., Lindgren C.M., McCann O.T., Mohlke K.L., Morris A.D., Naitza S., Orrù M., Palmer C.N., Pouta A., Randall J., Rathmann W., Saramies J., Scheet P., Scott L.J., Scuteri A., Sharp S., Sijbrands E., Smit J.H., Song K., Steinthorsdottir V., Stringham H.M., Tuomi T., Tuomilehto J., Uitterlinden A.G., Voight B.F., Waterworth D., Wichmann H.E., Willemsen G., Witteman J.C., Yuan X., Zhao J.H., Zeggini E., Schlessinger D., Sandhu M., Boomsma D.I., Uda M., Spector T.D., Penninx B.W., Altshuler D., Vollenweider P., Jarvelin M.R., Lakatta E., Waeber G., Fox C.S., Peltonen L., Groop L.C., Mooser V., Cupples L.A., Thorsteinsdottir U., Boehnke M., Barroso I., Van Duijn C., Dupuis J., Watanabe R.M., Stefansson K., McCarthy M.I., Wareham N.J., Meigs J.B., Abecasis G.R. Variants in MTNR1B influence fasting glucose levels. Nat. Genet. 2009;41:77–81. - PMC - PubMed
    1. Stumpf I., Mühlbauer E., Peschke E. Involvement of the cGMP pathway in mediating the insulin-inhibitory effect of melatonin in pancreatic beta-cells. J. Pineal Res. 2008;45:318–327. - PubMed

LinkOut - more resources