Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Nov 1;93(11):114103.
doi: 10.1063/5.0084433.

Segmentation of human aorta using 3D nnU-net-oriented deep learning

Affiliations

Segmentation of human aorta using 3D nnU-net-oriented deep learning

Feng Li et al. Rev Sci Instrum. .

Abstract

Computed tomography angiography (CTA) has become the main imaging technique for cardiovascular diseases. Before performing the transcatheter aortic valve intervention operation, segmenting images of the aortic sinus and nearby cardiovascular tissue from enhanced images of the human heart is essential for auxiliary diagnosis and guiding doctors to make treatment plans. This paper proposes a nnU-Net (no-new-Net) framework based on deep learning (DL) methods to segment the aorta and the heart tissue near the aortic valve in cardiac CTA images, and verifies its accuracy and effectiveness. A total of 130 sets of cardiac CTA image data (88 training sets, 22 validation sets, and 20 test sets) of different subjects have been used for the study. The advantage of the nnU-Net model is that it can automatically perform preprocessing and data augmentation according to the input image data, can dynamically adjust the network structure and parameter configuration, and has a high model generalization ability. Experimental results show that the DL method based on nnU-Net can accurately and effectively complete the segmentation task of cardiac aorta and cardiac tissue near the root on the cardiac CTA dataset, and achieves an average Dice similarity coefficient of 0.9698 ± 0.0081. The actual inference segmentation effect basically meets the preoperative needs of the clinic. Using the DL method based on the nnU-Net model solves the problems of low accuracy in threshold segmentation, bad segmentation of organs with fuzzy edges, and poor adaptability to different patients' cardiac CTA images. nnU-Net will become an excellent DL technology in cardiac CTA image segmentation tasks.

PubMed Disclaimer

LinkOut - more resources