High-content drug screening in zebrafish xenografts reveals high efficacy of dual MCL-1/BCL-XL inhibition against Ewing sarcoma
- PMID: 36462556
- DOI: 10.1016/j.canlet.2022.216028
High-content drug screening in zebrafish xenografts reveals high efficacy of dual MCL-1/BCL-XL inhibition against Ewing sarcoma
Abstract
Ewing sarcoma is a pediatric bone and soft tissue cancer with an urgent need for new therapies to improve disease outcome. To identify effective drugs, phenotypic drug screening has proven to be a powerful method, but achievable throughput in mouse xenografts, the preclinical Ewing sarcoma standard model, is limited. Here, we explored the use of xenografts in zebrafish for high-throughput drug screening to discover new combination therapies for Ewing sarcoma. We subjected xenografts in zebrafish larvae to high-content imaging and subsequent automated tumor size analysis to screen single agents and compound combinations. We identified three drug combinations effective against Ewing sarcoma cells: Irinotecan combined with either an MCL-1 or an BCL-XL inhibitor and in particular dual inhibition of the anti-apoptotic proteins MCL-1 and BCL-XL, which efficiently eradicated tumor cells in zebrafish xenografts. We confirmed enhanced efficacy of dual MCL-1/BCL-XL inhibition compared to single agents in a mouse PDX model. In conclusion, high-content screening of small compounds on Ewing sarcoma zebrafish xenografts identified dual MCL-1/BCL-XL targeting as a specific vulnerability and promising therapeutic strategy for Ewing sarcoma, which warrants further investigation towards clinical application.
Keywords: Anti-apoptotic protein inhibitors; Ewing sarcoma; High-content imaging; Phenotypic drug screening; Zebrafish xenografts.
Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials
