Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Nov 17:9:1005948.
doi: 10.3389/fvets.2022.1005948. eCollection 2022.

Constant rate infusion of diazepam or propofol for the management of canine cluster seizures or status epilepticus

Affiliations

Constant rate infusion of diazepam or propofol for the management of canine cluster seizures or status epilepticus

Giulia Cagnotti et al. Front Vet Sci. .

Abstract

Introduction: Cluster seizures (CS) and status epilepticus (SE) in dogs are severe neurological emergencies that require immediate treatment. Practical guidelines call for constant rate infusion (CRI) of benzodiazepines or propofol (PPF) in patients with seizures not responding to first-line treatment, but to date only few studies have investigated the use of CRI in dogs with epilepsy.

Study design: Retrospective clinical study.

Methods: Dogs that received CRI of diazepam (DZP) or PPF for antiepileptic treatment during hospitalization at the Veterinary Teaching Hospital of the University of Turin for CS or SE between September 2016 and December 2019 were eligible for inclusion. Favorable outcome was defined as cessation of clinically visible seizure activity within few minutes from the initiation of the CRI, no seizure recurrence within 24 h after discontinuation of CRI through to hospital discharge, and clinical recovery. Poor outcome was defined as recurrence of seizure activity despite treatment or death in hospital because of recurrent seizures, catastrophic consequences of prolonged seizures or no return to an acceptable neurological and clinical baseline, despite apparent control of seizure activity. Comparisons between the number of patients with favorable outcome and those with poor outcome in relation to type of CRI, seizure etiology, reason for presentation (CS or SE), sex, previous AED therapy and dose of PPF CRI were carried out.

Results: A total of 37 dogs, with 50 instances of hospitalization and CRI administered for CS or SE were included in the study. CRI of diazepam (DZP) or PPF was administered in 29/50 (58%) and in 21/50 (42%) instances of hospitalization, respectively. Idiopathic epilepsy was diagnosed in 21/37 (57%), (13/21 tier I and 8/21 tier II); structural epilepsy was diagnosed in 6/37 (16%) of which 4/6 confirmed and 2/6 suspected. A metabolic or toxic cause of seizure activity was recorded in 7/37 (19%). A total of 38/50 (76%) hospitalizations were noted for CS and 12/50 (24%) for SE. In 30/50 (60%) instances of hospitalization, the patient responded well to CRI with cessation of seizure activity, no recurrence in the 24 h after discontinuation of CRI through to hospital discharge, whereas a poor outcome was recorded for 20/50 (40%) cases (DZP CRI in 12/50 and PPF CRI in 8/50). Comparison between the number of patients with favorable outcome and those with poor outcome in relation to type of CRI, seizure etiology, reason for presentation (CS or SE), sex and previous AED therapy was carried out but no statistically significant differences were found.

Conclusions: The present study is the first to document administration of CRI of DZP or PPF in a large sample of dogs with epilepsy. The medications appeared to be tolerated without major side effects and helped control seizure activity in most patients regardless of seizure etiology. Further studies are needed to evaluate the effects of CRI duration on outcome and complications.

Keywords: cluster seizures; diazepam; dog; epilepsy; neurology; propofol; status epilepticus.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Similar articles

Cited by

References

    1. Bateman SW, Parent JM. Clinical findings, treatment, and outcome of dogs with status epilepticus or cluster seizures: 156 cases (1990–1995). J Am Vet Med Assoc. (1999) 215:1463–8. - PubMed
    1. Saito M, Munana KR, Sharp NJH, Olby NJ. Risk factors for development of status epilepticus in dogs with idiopathic epilepsy and effects of status epilepticus on outcome and survival time: 32 cases (1990–1996). J Am Vet Med Assoc. (2001) 219:618–23. 10.2460/javma.2001.219.618 - DOI - PubMed
    1. Zimmermann R, Hülsmeyer V-I, Sauter-Louis C, Fischer A. Status epilepticus and epileptic seizures in dogs. J Vet Intern Med. (2009) 23:970–6. 10.1111/j.1939-1676.2009.0368.x - DOI - PubMed
    1. Patterson ENE. Status epilepticus and cluster seizures. Vet Clin North Am Small Anim Pract. (2014) 44:1103–12. 10.1016/j.cvsm.2014.07.007 - DOI - PubMed
    1. Charalambous M, Volk HA, Van Ham L, Bhatti SFM. First-line management of canine status epilepticus at home and in hospital-opportunities and limitations of the various administration routes of benzodiazepines. BMC Vet Res. (2021) 17:1–19. 10.1186/s12917-021-02805-0 - DOI - PMC - PubMed