Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jan 15:317:120813.
doi: 10.1016/j.envpol.2022.120813. Epub 2022 Dec 2.

Wild oyster population resistance to ocean acidification adversely affected by bacterial infection

Affiliations

Wild oyster population resistance to ocean acidification adversely affected by bacterial infection

Xin Dang et al. Environ Pollut. .

Abstract

The carbon dioxide induced ocean acidification (OA) process is well known to have profound effects on physiology, survival and immune responses in marine organisms, and particularly calcifiers including edible oysters. At the same time, some wild populations could develop a complex and sophisticated immune system to cope with multiple biotic and abiotic stresses, such as bacterial infections and OA, over the long period of coevolution with the environment. However, it is unclear how immunological responses and the underlying mechanisms are altered under the combined effect of OA and bacterial infection, especially in the ecologically and economically important edible oysters. Here, we collected the wild population of oyster species Crassostrea hongkongensis (the Hong Kong oyster) from their native estuarine area and carried out a bacterial challenge with the worldwide pervasive pathogen of human foodborne disease, Vibrio parahaemolyticus, to investigate the host immune responses and molecular mechanisms under the high-CO2 and low pH-driven OA conditions. The wild population had a high immune resistance to OA, but the resistance is compromised under the combined effect of OA and bacterial infection both in vivo or in vitro. We classified all transcriptomic genes based on expression profiles and functional pathways and identified the specifically switched on and off genes and pathways under combined effect. These genes and pathways were mainly involved in multiple immunological processes including pathogen recognition, immune signal transduction and effectors. This work would help understand how the immunological function and mechanism response to bacterial infection in wild populations and predict the dynamic distribution of human health-related pathogens to reduce the risk of foodborne disease under the future climate change scenario.

Keywords: Foodborne disease control; Hong Kong oyster; Immune tolerance; Local adaptation; Pathogen; Wild population.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources