Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Jan 9;9(1):85-105.
doi: 10.1021/acsbiomaterials.2c01123. Epub 2022 Dec 7.

Porous Microneedles for Therapy and Diagnosis: Fabrication and Challenges

Affiliations
Review

Porous Microneedles for Therapy and Diagnosis: Fabrication and Challenges

Guangzhi Gao et al. ACS Biomater Sci Eng. .

Abstract

The use of microneedles (MNs), an innovative transdermal technology, enables efficient, convenient, painless, and controlled-release drug delivery. Porous microneedles (pMNs), special MNs with abundant interconnected pores that can produce capillary action, are gaining increasing attention as a novel MNs technology. pMNs can actively adsorb bioactive ingredients from solutions of drugs or vaccines for in vivo delivery or from interstitial skin fluids (ISFs) for wearable and point-of-care testing (POCT) products. Different pore sizes and porosities of pMNs can be achieved with different materials and preparation processes, which makes the application of pMNs adaptable to multiple scenarios. In addition, easier and faster detection will be accomplished by the smart combination of pMNs with other detection technologies. This paper aims to summarize the recent research progress of pMNs, focusing on the influence of various materials and their corresponding preparation methods on its structure and function display, discussing the key issues and looking forward to the future development.

Keywords: detection; drug delivery; fabrication; material; porous microneedles.

PubMed Disclaimer

Publication types