Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022;63(11):1558-1565.
doi: 10.11406/rinketsu.63.1558.

[Application of genome editing technology in gene therapy]

[Article in Japanese]
Affiliations

[Application of genome editing technology in gene therapy]

[Article in Japanese]
Takafumi Hiramoto et al. Rinsho Ketsueki. 2022.

Abstract

Genome editing has been attracting increasing attention as a new treatment for several refractory diseases since the CRISPR-Cas discovery has facilitated easy modification of target chromosomal DNA. The concept of treating refractory diseases by genome editing has been achieved in various animal models, and genome editing has been applied to human clinical trials for β-thalassemia, sickle cell disease, mucopolysaccharidosis, transthyretin amyloidosis, HIV infection, and CAR-T therapy. The genome editing technology targets the germline in industrial applications in animals and plants and is directed at the chromosomal DNA of the somatic cells in human therapeutic applications. Genome editing therapy for germline cells is currently forbidden due to ethical and safety concerns. Concerns regarding genome editing technology include safety (off-target effects) as well as technical aspects (low homologous recombination). Various technological innovations for genome editing are expected to expand its clinical application to various diseases in the future.

Keywords: CRISPR-Cas; Genome editing; Zinc finger nuclease.

PubMed Disclaimer

Publication types