Characterization of Rsg3, a novel greenbug resistance gene from the Chinese barley landrace PI 565676
- PMID: 36479942
- DOI: 10.1002/tpg2.20287
Characterization of Rsg3, a novel greenbug resistance gene from the Chinese barley landrace PI 565676
Abstract
Greenbug (Schizaphis graminum Rondani) is a pest that poses a serious threat to cereal production worldwide. Yield losses caused by greenbug are predicted to increase because of global warming. To date, only a few barley (Hordeum vulgare L.) greenbug resistance genes have been reported and new genes are urgently needed because of the continuous occurrence of novel greenbug biotypes. PI 565676, a landrace collected from Henan province of China, exhibits high resistance to several predominant greenbug biotypes. An F6:7 recombinant inbred line (RIL) population derived from the cross PI 565676 × 'Weskan' was evaluated for response to greenbug biotypes E and F using a standard aphid assay protocol, and a randomized complete block design with two replicates was adopted. The RIL population was genotyped using single-nucleotide polymorphisms (SNPs) markers generated by genotyping-by-sequencing (GBS). Gene mapping placed the greenbug resistance gene in PI 565676, designated Rsg3, to an interval of 93,140 bp between 667,558,306 and 667,651,446 bp on the long arm of chromosome 3H. Four high-confidence genes were annotated in this region with one encoding a leucine-rich repeat-containing protein. An allelism test indicated that Rsg3 is independent of the Rsg1 locus, with estimated recombination frequency of 12.85 ± 0.20% and genetic distance of 13.14 ± 0.21 cM between the two loci. Therefore, Rsg3 represents a new locus for greenbug resistance. Two SNPs flanking Rsg3 were converted to Kompetitive Allele Specific PCR (KASP) markers, which can be used to tag Rsg3 in barley breeding.
© 2022 The Authors. The Plant Genome published by Wiley Periodicals LLC on behalf of Crop Science Society of America. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
References
REFERENCES
-
- Aljaryian, R., & Kumar, L. (2016). Changing global risk of invading greenbug schizaphis graminum under climate change. Crop Protection, 88, 137-148. https://doi.org/10.1016/j.cropro.2016.06.008
-
- Armstrong, J. S., Mornhinweg, D. W., Payton, M. E., & Puterka, G. J. (2016). The discovery of resistant sources of spring barley, Hordeum vulgare ssp. spontaneum, and unique greenbug biotypes. Journal of Economic Entomology, 109, 434-438. https://doi.org/10.1093/jee/tov320
-
- Azhaguvel, P., Mornhinweg, D., Vidya-Saraswathi, D., Rudd, J. C., Chekhovskiy, K., Saha, M., Close, T. J., Dahleen, L. S., & Weng, Y. (2014). Molecular mapping of greenbug (Schizaphis graminum) resistance gene Rsg1 in barley. Plant Breeding, 133, 227-233. https://doi.org/10.1111/pbr.12143
-
- Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 23, 2633-2635. https://doi.org/10.1093/bioinformatics/btm308
-
- Dai, F., Nevo, E., Wu, D., Comadran, J., Zhou, M., Qiu, L., Chen, Z., Beiles, A., Chen, G., & Zhang, G. (2012). Tibet is one of the centers of domestication of cultivated barley. Proceedings of the National Academy of Sciences, 109, 16969-16973. https://doi.org/10.1073/pnas.1215265109
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous