Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Feb;64(2):e23-e29.
doi: 10.1111/epi.17480. Epub 2022 Dec 21.

Daily resting-state intracranial EEG connectivity for seizure risk forecasts

Affiliations

Daily resting-state intracranial EEG connectivity for seizure risk forecasts

Louis Cousyn et al. Epilepsia. 2023 Feb.

Abstract

Forecasting seizure risk aims to detect proictal states in which seizures would be more likely to occur. Classical seizure prediction models are trained over long-term electroencephalographic (EEG) recordings to detect specific preictal changes for each seizure, independently of those induced by shifts in states of vigilance. A daily single measure-during a vigilance-controlled period-to estimate the risk of upcoming seizure(s) would be more convenient. Here, we evaluated whether intracranial EEG connectivity (phase-locking value), estimated from daily vigilance-controlled resting-state recordings, could allow distinguishing interictal (no seizure) from preictal (seizure within the next 24 h) states. We also assessed its relevance for daily forecasts of seizure risk using machine learning models. Connectivity in the theta band was found to provide the best prediction performances (area under the curve ≥ .7 in 80% of patients), with accurate daily and prospective probabilistic forecasts (mean Brier score and Brier skill score of .13 and .72, respectively). More efficient ambulatory clinical application could be considered using mobile EEG or chronic implanted devices.

Keywords: SEEG; machine learning; phase synchrony; probabilistic forecasting; seizure prediction.

PubMed Disclaimer

References

REFERENCES

    1. Le Van QM, Soss J, Navarro V, Navarro V, Robertson R, Chavez M, et al. Preictal state identification by synchronization changes in long-term intracranial EEG recordings. Clin Neurophysiol. 2005;116(3):559-68.
    1. van Mierlo P, Papadopoulou M, Carrette E, Boon P, Vandenberghe S, Vonck K, et al. Functional brain connectivity from EEG in epilepsy: seizure prediction and epileptogenic focus localization. Prog Neurobiol. 2014;121:19-35.
    1. Kuhlmann L, Karoly P, Freestone DR, Brinkmann BH, Temko A, Barachant A, et al. Epilepsyecosystem.org: crowd-sourcing reproducible seizure prediction with long-term human intracranial EEG. Brain. 2018;141(9):2619-30.
    1. Navarro V, Martinerie J, Le Van Quyen M, Baulac M, Dubeau F, Gotman J. Seizure anticipation: do mathematical measures correlate with video-EEG evaluation? Epilepsia. 2005;46(3):385-96.
    1. Schelter B, Winterhalder M, Maiwald T, Brandt A, Schad A, Timmer J, et al. Do false predictions of seizures depend on the state of vigilance? A report from two seizure-prediction methods and proposed remedies. Epilepsia. 2006;47(12):2058-70.

Publication types

LinkOut - more resources