Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Dec 9;51(1):13.
doi: 10.1007/s00240-022-01384-5.

Integrated analysis of mRNA-seq and miRNA-seq reveals the potential roles of Egr1, Rxra and Max in kidney stone disease

Affiliations

Integrated analysis of mRNA-seq and miRNA-seq reveals the potential roles of Egr1, Rxra and Max in kidney stone disease

Linxi Huang et al. Urolithiasis. .

Abstract

Nephrolithiasis is one of the most common and frequent urologic diseases worldwide. The molecular mechanism of kidney stone formation is complex and remains to be illustrated. Transcript factors (TFs) that influenced the expression pattern of multiple genes, as well as microRNAs, important posttranscriptional modulators, play vital roles in this disease progression. Datasets of nephrolithiasis mice and kidney stone patients were acquired from Gene Expression Omnibus repository. TFs were predicted from differentially expressed genes by RcisTarget. The target genes of differential-expressed microRNAs were predicted by miRWalk. MicroRNA-mRNA network and PPI network were constructed. Functional enrichment analysis was performed via Metascape and Cytoscape identified hub genes. The assay of quantitative real-time PCR (q-PCR) and immunochemistry and the datasets of oxalate diet-induced nephrolithiasis mice kidneys and kidney stone patients' samples were utilized to validate the bioinformatic results. We identified three potential key TFs (Egr1, Rxra, Max), which can be modulated by miR-181a-5p, miR-7b-3p and miR-22-3p, respectively. The TFs and their regulated hub genes influenced the progression of nephrolithiasis via altering the expression of genes enriched in the functions of fibrosis, cell proliferation and molecular transportation and metabolism. The expression changes of transcription factors were consistent in q-PCR and immunochemistry results. For regulated hub genes, they showed consistent expression changes in oxalate diet-induced nephrolithiasis mice model and human kidneys with stones. The identified and verified three TFs, which may be modulated by microRNAs in nephrolithiasis disease progression, mainly influence biological processes responding to fibrosis, proliferation and molecular transportation and metabolism. The transcript influence showed consistency in multiple nephrolithiasis mice models and kidney stone patients.

Keywords: Bioinformatic analysis; Nephrolithiasis; Transcription factor; microRNA.

PubMed Disclaimer

Comment in

Similar articles

Cited by

References

    1. Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK, Doizi S et al (2016) Kidney stones. Nat Rev Dis Primers 2:16008. https://doi.org/10.1038/nrdp.2016.8 - DOI - PubMed - PMC
    1. Romero V, Akpinar H, Assimos DG (2010) Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev Urol 12(2–3):e86-96 - PubMed - PMC
    1. Xu LHR, Adams-Huet B, Poindexter JR, Maalouf NM, Moe OW, Sakhaee K (2017) Temporal changes in kidney stone composition and in risk factors predisposing to stone formation. J Urol 197(6):1465–1471. https://doi.org/10.1016/j.juro.2017.01.057 - DOI - PubMed - PMC
    1. Khan SR, Canales BK, Dominguez-Gutierrez PR (2021) Randall’s plaque and calcium oxalate stone formation: role for immunity and inflammation. Nat Rev Nephrol 17(6):417–433. https://doi.org/10.1038/s41581-020-00392-1 - DOI - PubMed
    1. Joshi S, Peck AB, Khan SR (2013) NADPH oxidase as a therapeutic target for oxalate induced injury in kidneys. Oxid Med Cell Longev 2013:462361. https://doi.org/10.1155/2013/462361 - DOI - PubMed - PMC

Supplementary concepts

LinkOut - more resources