Identifying Gene Markers Associated with Cell Subpopulations
- PMID: 36495455
- DOI: 10.1007/978-1-0716-2756-3_13
Identifying Gene Markers Associated with Cell Subpopulations
Abstract
An important point of the analysis of a single-cell RNA experiment is the identification of the key elements, i.e., genes, characterizing each cell subpopulation cluster. In this chapter, we describe the use of sparsely connected autoencoder, as a tool to convert single-cell clusters in pseudo-RNAseq experiments to be used as input for differential expression analysis, and the use of COMET, as a tool to depict cluster-specific gene markers.
Keywords: Comet; Feature selection; Sparsely connected autoencoder.
© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
References
-
- Yu L, Cao Y, Yang JYH, Yang P (2022) Benchmarking clustering algorithms on estimating the number of cell types from single-cell RNA-sequencing data. Genome Biol 23(1):49. https://doi.org/10.1186/s13059-022-02622-0 - DOI
-
- James KR, Gomes T, Elmentaite R, Kumar N, Gulliver EL, King HW, Stares MD, Bareham BR, Ferdinand JR, Petrova VN, Polanski K, Forster SC, Jarvis LB, Suchanek O, Howlett S, James LK, Jones JL, Meyer KB, Clatworthy MR, Saeb-Parsy K, Lawley TD, Teichmann SA (2020) Distinct microbial and immune niches of the human colon. Nat Immunol 21(3):343–353. https://doi.org/10.1038/s41590-020-0602-z - DOI
-
- Alessandri L, Ratto ML, Contaldo SG, Beccuti M, Cordero F, Arigoni M, Calogero RA (2021) Sparsely connected autoencoders: a multi-purpose tool for single cell omics analysis. Int J Mol Sci 22(23):12755. https://doi.org/10.3390/ijms222312755 - DOI
-
- Alessandri L, Cordero F, Beccuti M, Licheri N, Arigoni M, Olivero M, Di Renzo MF, Sapino A, Calogero R (2021) Sparsely-connected autoencoder (SCA) for single cell RNAseq data mining. NPJ Syst Biol Appl 7(1):1. https://doi.org/10.1038/s41540-020-00162-6 - DOI
-
- Alessandri L, Cordero F, Beccuti M, Arigoni M, Olivero M, Romano G, Rabellino S, Licheri N, De Libero G, Pace L, Calogero RA (2019) rCASC: reproducible classification analysis of single-cell sequencing data. Gigascience 8(9):giz105. https://doi.org/10.1093/gigascience/giz105 - DOI
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
