Rational design, synthesis, and pharmacological evaluation of a cohort of novel beta-adrenergic receptors ligands enables an assessment of structure-activity relationships
- PMID: 36495629
- DOI: 10.1016/j.ejmech.2022.114961
Rational design, synthesis, and pharmacological evaluation of a cohort of novel beta-adrenergic receptors ligands enables an assessment of structure-activity relationships
Abstract
Biomedical applications of molecules that are able to modulate β-adrenergic signaling have become increasingly attractive over the last decade, revealing that β-adrenergic receptors (β-ARs) are key targets for a plethora of therapeutic interventions, including cancer. Despite successes in β-AR drug discovery, identification of β-AR ligands that are useful as selective chemical tools in pharmacological studies of the three β-AR subtypes, or lead compounds for drug development is still a highly challenging task. This is mainly due to the intrinsic plasticity of β-ARs as G protein-coupled receptors in conjunction with the requirement for functional receptor subtype selectivity, tissue specificity and minimal off-target effects. With the aim to provide insight into structure-activity relationships for the three β-AR subtypes, we have synthesized and obtained the pharmacological profile of a series of structurally diverse compounds (named MC) that were designed based on the aryloxy-propanolamine scaffold of SR59230A. Comparative analysis of their predicted binding mode within the active and inactive states of the receptors in combination with their pharmacological profile revealed key structural elements that control their activity as agonists or antagonists, in addition to clues about substituents that mediate selectivity for one receptor subtype over the others. We anticipate that these results will facilitate selective β-AR drug development efforts.
Keywords: Aryloxy propanolamine; G-protein-coupled receptors; Molecular docking; β-adrenergic receptors; β-agonist; β-antagonist; β-blocker.
Copyright © 2022 Elsevier Masson SAS. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
- Full Text Sources
- Research Materials
 
        