Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Feb 28:555:216030.
doi: 10.1016/j.canlet.2022.216030. Epub 2022 Dec 8.

Cytidine deaminase deficiency in mice enhances genetic instability but limits the number of chemically induced colon tumors

Affiliations
Free article

Cytidine deaminase deficiency in mice enhances genetic instability but limits the number of chemically induced colon tumors

Rosine Onclercq-Delic et al. Cancer Lett. .
Free article

Abstract

Cytidine deaminase (CDA) catalyzes the deamination of cytidine (C) and deoxycytidine (dC) to uridine and deoxyuridine, respectively. We recently showed that CDA deficiency leads to genomic instability, a hallmark of cancers. We therefore investigated whether constitutive CDA inactivation conferred a predisposition to cancer development. We developed a novel mouse model of Cda deficiency by generating Cda-knockout mice. Cda+/+ and Cda-/- mice did not differ in lifetime phenotypic or behavioral characteristics, or in the frequency or type of spontaneous cancers. However, the frequency of chemically induced tumors in the colon was significantly lower in Cda-/- mice. An analysis of primary kidney cells from Cda-/- mice revealed an excess of C and dC associated with significantly higher frequencies of sister chromatid exchange and ultrafine anaphase bridges and lower Parp-1 activity than in Cda+/+ cells. Our results suggest that, despite inducing genetic instability, an absence of Cda limits the number of chemically induced tumors. These results raise questions about whether a decrease in basal Parp-1 activity can protect against inflammation-driven tumorigenesis; we discuss our findings in light of published data for the Parp-1-deficient mouse model.

Keywords: Cancer; Cda-knockout mice; Cytidine deaminase (Cda); Genetic instability; Poly(ADP-Ribose) polymerase 1(Parp-1).

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types

Substances

LinkOut - more resources