Terminal Uridylyltransferases TUT4/7 Regulate microRNA and mRNA Homeostasis
- PMID: 36497000
- PMCID: PMC9736393
- DOI: 10.3390/cells11233742
Terminal Uridylyltransferases TUT4/7 Regulate microRNA and mRNA Homeostasis
Abstract
The terminal nucleotidyltransferases TUT4 and TUT7 (TUT4/7) regulate miRNA and mRNA stability by 3' end uridylation. In humans, TUT4/7 polyuridylates both mRNA and pre-miRNA, leading to degradation by the U-specific exonuclease DIS3L2. We investigate the role of uridylation-dependent decay in maintaining the transcriptome by transcriptionally profiling TUT4/7 deleted cells. We found that while the disruption of TUT4/7 expression increases the abundance of a variety of miRNAs, the let-7 family of miRNAs is the most impacted. Eight let-7 family miRNAs were increased in abundance in TUT4/7 deleted cells, and many let-7 mRNA targets are decreased in abundance. The mRNAs with increased abundance in the deletion strain are potential direct targets of TUT4/7, with transcripts coding for proteins involved in cellular stress response, rRNA processing, ribonucleoprotein complex biogenesis, cell-cell signaling, and regulation of metabolic processes most affected in the TUT4/7 knockout cells. We found that TUT4/7 indirectly control oncogenic signaling via the miRNA let-7a, which regulates AKT phosphorylation status. Finally, we find that, similar to fission yeast, the disruption of uridylation-dependent decay leads to major rearrangements of the transcriptome and reduces cell proliferation and adhesion.
Keywords: RNA degradation; miRNA/mRNA network; microRNA homeostasis; oncogenic signaling; transcriptome; uridylation dependent decay.
Conflict of interest statement
The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.
Figures






References
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases