Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Dec 4;27(23):8536.
doi: 10.3390/molecules27238536.

Continuous-Flow Chemistry and Photochemistry for Manufacturing of Active Pharmaceutical Ingredients

Affiliations
Review

Continuous-Flow Chemistry and Photochemistry for Manufacturing of Active Pharmaceutical Ingredients

Pavlína Horáková et al. Molecules. .

Abstract

An active pharmaceutical ingredient (API) is any substance in a pharmaceutical product that is biologically active. That means the specific molecular entity is capable of achieving a defined biological effect on the target. These ingredients need to meet very strict limits; chemical and optical purity are considered to be the most important ones. A continuous-flow synthetic methodology which utilizes a continuously flowing stream of reactive fluids can be easily combined with photochemistry, which works with the chemical effects of light. These methods can be useful tools to meet these strict limits. Both of these methods are unique and powerful tools for the preparation of natural products or active pharmaceutical ingredients and their precursors with high structural complexity under mild conditions. This review shows some main directions in the field of active pharmaceutical ingredients' preparation using continuous-flow chemistry and photochemistry with numerous examples of industry and laboratory-scale applications.

Keywords: active pharmaceutical ingredients; flow chemistry; photochemistry.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Scheme 1
Scheme 1
Ibuprofen flow synthesis: 1—isobutylbenzene, 2—propionic acid, 3—triflic acid, 4—1-(4-isobutylphenyl)propan-1-one, 3—methyl 2-(4-isobutylphenyl)propanoate, 6—ibuprofen.
Scheme 2
Scheme 2
Scheme of the three-minute ibuprofen synthesis from Jamison (2015) [16]: 1—isobutylbenzene, 4—1-(4-isobutylphenyl)propan-1-one, 5—methyl 2-(4-isobutylphenyl)propanoate, 6–ibuprofen (sodium salt), 7—propionyl chloride.
Scheme 3
Scheme 3
Enantioselective continuous-flow synthesis of (S)-warfarin: 8—4-hydroxy-coumarin, 9—cinchona-derived primary amine catalyst, 10—benzalacetone, 11—warfarin.
Scheme 4
Scheme 4
First flow formation of atropine: 12—tropine, 13—phenylacetyl chloride, 14—formaldehyde, 15—atropine.
Scheme 5
Scheme 5
Atropine flow synthesis: 12—tropine, 13—phenylacetyl chloride, 14—formaldehyde, 15—atropine.
Scheme 6
Scheme 6
Parke–Davis and Company’s 1956 synthesis of ketamine: 16o-chlorobenzonitrile, 17—cyclopentylmagnesium bromide, 18—(2-chlorophenyl)(cyclopentyl)methanone, 19—(2-chlorophenyl)(methylimino)methylcyclopentan-1-ol, 20—ketamine.
Scheme 7
Scheme 7
Flow synthesis of ketamine: 18—(2-chlorophenyl)(cyclopentyl)methanone, 19—(2-chlorophenyl)(methylimino)methylcyclopentan-1-ol, 20—ketamine, 21—2-(2-chlorophenyl)-2-(methylamino)cyclohexan-1-one.
Scheme 8
Scheme 8
Flow synthesis of imatinib by Ley and co-workers: 22—4-(chloromethyl)benzoyl chloride, 23—3-bromo-4-methylaniline, 24N-(3-bromo-4-methylphenyl)-4-(chloromethyl)benzamide, 25—1-methylpiperazine, 26—substituted benzamide 27—4-(pyridin-3-yl)pyrimidin-2-amine, 28—imatinib.
Scheme 9
Scheme 9
Flow synthesis of imatinib: 29—(4-methylpiperazin-1-yl)methyl benzonitrile, 30—4-bromo-2-chloro toluene, 28—imatinib, 31—2-aminopyrimidine hydrochloride.
Scheme 10
Scheme 10
Flow synthesis of rufinamide: 32—difluorobenzyl bromide, 33—2-(azidomethyl)-1,3-difluorobenzene, 34—methyl propiolate, 35—propiolamide, 36—rufinamide.
Scheme 11
Scheme 11
Convergent-flow synthesis of rufinamide utilizing radial system: 32—difluorobenzyl bromide, 33—2-(azidomethyl)-1,3-difluorobenzene, 34—methyl propiolate, 35—propiolamide, 36—rufinamide.
Scheme 12
Scheme 12
Linear Flow synthesis of rufinamide utilizing radial system: 32—difluorobenzyl bromide, 33—2-(azidomethyl)-1,3-difluorobenzene, 36—rufinamide, 37—methyl propiolate, 38—methyltriazole carboxylate.
Scheme 13
Scheme 13
One-flow approach in (−)-oseltamivir synthesis: 39N-(2-nitrovinyl)acetamide, 40—2-(pentan-3-yloxy)acetaldehyde, 41—thiourea, 42—diphenylmethyl pyrrolidine, 43—ethyl 2-(diethoxyphosphoryl)acrylate, 44—oseltamivir.
Scheme 14
Scheme 14
Fast-flow synthesis of Linezolid: 45—(+)-epichlorhydrin, 46—3,4-difluoronitrobenzene, 47—morfoline, 48—linezolid.
Scheme 15
Scheme 15
Lomustine flow synthesis: 49—cyclohexylamine, 50—1-chloro-2-isocyanatoethane, 51tert-butyl nitrite, 52—lomustine.
Scheme 16
Scheme 16
Continuous-flow synthesis of rolipram: 53—3-(cyclopentyloxy)-4-methoxybenzaldehyde, 54—dimethyl malonate, 55—rolipram.
Scheme 17
Scheme 17
Continuous-flow synthesis of norephedrine: 56—benzaldehyde, 57—nitroethane, 58—norephedrine.
Scheme 18
Scheme 18
Photochemical synthesis of ibuprofen: 1—isobutylbenzene, 59—2-chloropropanoyl chloride, 60—chloropropiophenone, 61—transition state, 6—ibuprofen.
Scheme 19
Scheme 19
Synthesis of hypericin by utilization of LED light source: 62—emodin, 63—photohypericin, 64—hypericin.
Scheme 20
Scheme 20
Photocycloaddition synthesis of neostenine: 65—difuran intermediate, 66—pyrrole intermediate, 67—furoindole intermediate, 68—neostenine.
Scheme 21
Scheme 21
Total synthesis of (+)-goniofufurone: 69D-isosorbide, 70—tetrahydrofuro[3,2-b]furan-3-yl acetate, 71—2-phenylhexahydro-2H-furo[3,2-b]oxeto[3,2-d]furan-5-yl acetate, 72—2-phenylhexahydro-2H-furo[3,2-b]oxeto[3,2-d]furan-5-yl acetate isomer, 73—goniofufurone.
Scheme 22
Scheme 22
Synthesis of ascaridol: 74L-terpinene, 75—ascaridol.
Scheme 23
Scheme 23
Fulvestrant side chain preparation via continuous-flow photochemistry: 76—allyl alcohol, 77—pentafluoro-2-iodopentan-1-ol, 78—pentafluoro-1-ol, 79—fulvestrant.
Scheme 24
Scheme 24
(+)-Epigalcatin photocatalytic preparation: 80—1,2-bis benzylidene succinate amide ester, 81—cyclization product—(3,4-dimethoxyphenyl-hexahydro-1H-[1,3]dioxolo[4′,5′:6,7]naphtho[2,3-f]pyrrolo[2,1-c][1,4]oxazocine-6,14-dione), 82—isolated product—(methyl (5R,6R)-5-(3,4-dimethoxyphenyl)-7-((S)-2-(hydroxymethyl)pyrrolidine-1-carbonyl)-5,6-dihydronaphtho[2,3-d][1,3]dioxole-6-carboxylate), 83—epigalcatin.
Scheme 25
Scheme 25
Synthesis of myriceric acid A intermediate: 84—heptamethyl-3,16-dioxooctadecahydro-(epoxymethano)picen-13-yl nitrite, 85—myriceric acid A intermediate.
Scheme 26
Scheme 26
Continuous-flow synthesis of artemisinin: 86—dihydroartemisinic acid, 87—hydroperoxy-4,7-dimethyl-octahydronaphthalen-1-yl propanoic acid, 88—artemisinin.
Scheme 27
Scheme 27
Continuous-flow synthesis of vitamin D3: 89—provitamin D3, 90—previtamin D3, 91—vitamin D3.
Scheme 28
Scheme 28
Flow photobromination of an intermediate for the production of rosuvastatin: 92—5-methyl substituted pyrimidine, 93—5-methyl brominated pyrimidine, 94—rosuvastatin.
Scheme 29
Scheme 29
Two-step continuous-flow hydantoin synthesis: 95—amine, 96—aminonitrile, 97—hydantoin.
Scheme 30
Scheme 30
Synthesis of oxazolidinone in batch: 98—L-phenylalanine methyl ester hydrochloride, 99—methyl bis(tert-butoxycarbonyl)-L-phenylalaninate, 100—bromo-phenylpropanoate, 101—oxazolidinone.
Scheme 31
Scheme 31
Synthesis of oxazolidinone under the flow conditions: 99—methyl bis(tert-butoxycarbonyl)-L-phenylalaninate, 100—bromo-phenylpropanoate, 101—Oxazolidinone.
Scheme 32
Scheme 32
Continuous-flow synthesis of CDK9 inhibitor: 102—pyridin-4-ylmethanol, 103—propionaldehyde, 104—(R)-2-methyl-3-(pyridin-4-yl)propanal, 105—4-(4-fluoro-2-methoxyphenyl)pyridin-2-amine, 106—CDK9 inhibitor.

Similar articles

Cited by

References

    1. Booker-Milburn K.I., Noel T. Flow Photochemistry. ChemPhotoChem. 2018;2:830.
    1. Elgue S., Aillet T., Loubiere K., Conté A., Dechy-Cabaret O., Prat L., Horn C.R., Lobet O., Vallon S. Flow photochemistry: A meso-scale reactor for industrial applications. Chim. Oggi. 2015;33:58–62.
    1. Wegner J., Ceylan S., Kirschning A. Ten key issues in modern flow chemistry. Chem. Commun. 2011;47:4583–4592. doi: 10.1039/c0cc05060a. - DOI - PubMed
    1. Beeler A.B. Introduction: Photochemistry in organic synthesis. Chem. Rev. 2016;116:9629–9630. - PubMed
    1. Urge L., Alcazar J., Huck L., Dormán G. Recent advances of microfluidics technologies in the field of medicinal chemistry. Annu. Rep. Med. Chem. 2017;50:87–147.

MeSH terms

Substances

LinkOut - more resources