Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jan 15:459:116342.
doi: 10.1016/j.taap.2022.116342. Epub 2022 Dec 9.

Prediction of inotropic effect based on calcium transients in human iPSC-derived cardiomyocytes and machine learning

Affiliations
Free article

Prediction of inotropic effect based on calcium transients in human iPSC-derived cardiomyocytes and machine learning

Hongbin Yang et al. Toxicol Appl Pharmacol. .
Free article

Abstract

Functional changes to cardiomyocytes are undesirable during drug discovery and identifying the inotropic effects of compounds is hence necessary to decrease the risk of cardiovascular adverse effects in the clinic. Recently, approaches leveraging calcium transients in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been developed to detect contractility changes, induced by a variety of mechanisms early during drug discovery projects. Although these approaches have been able to provide some predictive ability, we hypothesised that using additional waveform parameters could offer improved insights, as well as predictivity. In this study, we derived 25 parameters from each calcium transient waveform and developed a modified Random Forest method to predict the inotropic effects of the compounds. In total annotated data for 48 compounds were available for modelling, out of which 31 were inotropes. The results show that the Random Forest model with a modified purity criterion performed slightly better than an unmodified algorithm in terms of the Area Under the Curve, giving values of 0.84 vs 0.81 in a cross-validation, and outperformed the ToxCast Pipeline model, for which the highest value was 0.76 when using the best-performing parameter, PW10. Our study hence demonstrates that more advanced parameters derived from waveforms, in combination with additional machine learning methods, provide improved predictivity of cardiovascular risk associated with inotropic effects.

Keywords: Calcium transients; Cardiotoxicity; Contractility; Machine learning; hiPSC-CM.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types