In defense of decentralized research data management
- PMID: 36504549
- PMCID: PMC9731181
- DOI: 10.1515/nf-2020-0037
In defense of decentralized research data management
Abstract
Decentralized research data management (dRDM) systems handle digital research objects across participating nodes without critically relying on central services. We present four perspectives in defense of dRDM, illustrating that, in contrast to centralized or federated research data management solutions, a dRDM system based on heterogeneous but interoperable components can offer a sustainable, resilient, inclusive, and adaptive infrastructure for scientific stakeholders: An individual scientist or laboratory, a research institute, a domain data archive or cloud computing platform, and a collaborative multisite consortium. All perspectives share the use of a common, self-contained, portable data structure as an abstraction from current technology and service choices. In conjunction, the four perspectives review how varying requirements of independent scientific stakeholders can be addressed by a scalable, uniform dRDM solution and present a working system as an exemplary implementation.
Dezentrale Forschungsdatenmanagement (dFDM) Systeme verwalten digitale Forschungsdaten mit mehreren Teilnehmern, ohne dabei von einem zentralen Service abhängig zu sein. Zur Verteidigung von dFDM präsentieren wir vier Perspektiven: Einzelne Wissenschaftler, Institutionen, Datenarchive, Analyse-Plattformen und Konsortien, die zeigen, dass heterogene, aber auf interoperablen Komponenten basierende dFDM Systeme, im Gegensatz zu zentralisierten oder föderierten Lösungen, eine nachhaltige, resiliente, offene und anpassungsfähige Infrastruktur für wissenschaftliche Interessensgruppen sein können. Allen ist die Verwendung einer einheitlichen, portablen Datenstruktur gemein, die als Abstraktion von aktuell verwendeten Technologien zum Einsatz kommt. Zusammengenommen zeigen diese Perspektiven beispielhaft anhand eines in der Praxis verwendeten Systems, wie vielfältige Anforderungen unterschiedlicher Interessengruppen durch eine skalierbare dFDM Lösung adressiert werden können.
Keywords: BrainLife; Canadian Open Neuroscience Platform; DataLad; Interoperability; OpenNeuro.
Conflict of interest statement
Conflict of interest statement: The authors declare no conflicts of interest.
Figures
References
-
- Avesani P, McPherson B, Hayashi S, Caiafa CF, Henschel R, Garyfallidis E, Kitchell L, Bullock D, Patterson A, Olivetti E, et al. (2019). The open diffusion data derivatives, brain data upcycling via integrated publishing of derivatives and reproducible open cloud services. Sci. Data 6, 1–13. - PMC - PubMed
-
- Gorgolewski K, Esteban O, Schaefer G, Wandell B, and Poldrack R (2017). OpenNeuro—A free online platform for sharing and analysis of neuroimaging data. Organ. Hum. Brain Mapp. Vancouver, Canada 1677.
-
- Guthrie S, Lichten C, Harte E, Parks S, Wooding S 2017. International Mobility of Researchers (Cambridge, UK: RAND EUROPE; ).
-
- Hanke M, Halchenko YO, Poldrack B, Meyer K, Solanky DS, Alteva G, Gors J, MacFarlane D, Häusler CO, Olson T, et al. (2020). DataLad/DataLad: 0.13.5 (October 30, 2020, Version 0.13.5). Zenodo, 10.5281/zenodo.4161813. - DOI
Grants and funding
LinkOut - more resources
Full Text Sources