Regulation of hierarchical carbon substrate utilization, nitrogen fixation, and root colonization by the Hfq/Crc/CrcZY genes in Pseudomonas stutzeri
- PMID: 36505936
- PMCID: PMC9730152
- DOI: 10.1016/j.isci.2022.105663
Regulation of hierarchical carbon substrate utilization, nitrogen fixation, and root colonization by the Hfq/Crc/CrcZY genes in Pseudomonas stutzeri
Abstract
Bacteria of the genus Pseudomonas consume preferred carbon substrates in nearly reverse order to that of enterobacteria, and this process is controlled by RNA-binding translational repressors and regulatory ncRNA antagonists. However, their roles in microbe-plant interactions and the underlying mechanisms remain uncertain. Here we show that root-associated diazotrophic Pseudomonas stutzeri A1501 preferentially catabolizes succinate, followed by the less favorable substrate citrate, and ultimately glucose. Furthermore, the Hfq/Crc/CrcZY regulatory system orchestrates this preference and contributes to optimal nitrogenase activity and efficient root colonization. Hfq has a central role in this regulatory network through different mechanisms of action, including repressing the translation of substrate-specific catabolic genes, activating the nitrogenase gene nifH posttranscriptionally, and exerting a positive effect on the transcription of an exopolysaccharide gene cluster. Our results illustrate an Hfq-mediated mechanism linking carbon metabolism to nitrogen fixation and root colonization, which may confer rhizobacteria competitive advantages in rhizosphere environments.
Keywords: Plant genetics; plant biology; plant nutrition.
© 2022.
Conflict of interest statement
The authors have no competing interests to declare.
Figures








Similar articles
-
Integrated Hfq-interacting RNAome and transcriptomic analysis reveals complex regulatory networks of nitrogen fixation in root-associated Pseudomonas stutzeri A1501.mSphere. 2024 Jun 25;9(6):e0076223. doi: 10.1128/msphere.00762-23. Epub 2024 May 15. mSphere. 2024. PMID: 38747590 Free PMC article.
-
NfiR, a New Regulatory Noncoding RNA (ncRNA), Is Required in Concert with the NfiS ncRNA for Optimal Expression of Nitrogenase Genes in Pseudomonas stutzeri A1501.Appl Environ Microbiol. 2019 Jul 1;85(14):e00762-19. doi: 10.1128/AEM.00762-19. Print 2019 Jul 15. Appl Environ Microbiol. 2019. PMID: 31076427 Free PMC article.
-
The novel regulatory ncRNA, NfiS, optimizes nitrogen fixation via base pairing with the nitrogenase gene nifK mRNA in Pseudomonas stutzeri A1501.Proc Natl Acad Sci U S A. 2016 Jul 26;113(30):E4348-56. doi: 10.1073/pnas.1604514113. Epub 2016 Jul 12. Proc Natl Acad Sci U S A. 2016. PMID: 27407147 Free PMC article.
-
Chemotaxis of Beneficial Rhizobacteria to Root Exudates: The First Step towards Root-Microbe Rhizosphere Interactions.Int J Mol Sci. 2021 Jun 22;22(13):6655. doi: 10.3390/ijms22136655. Int J Mol Sci. 2021. PMID: 34206311 Free PMC article. Review.
-
Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects.FEMS Microbiol Rev. 2000 Oct;24(4):487-506. doi: 10.1111/j.1574-6976.2000.tb00552.x. FEMS Microbiol Rev. 2000. PMID: 10978548 Review.
Cited by
-
Integrated Hfq-interacting RNAome and transcriptomic analysis reveals complex regulatory networks of nitrogen fixation in root-associated Pseudomonas stutzeri A1501.mSphere. 2024 Jun 25;9(6):e0076223. doi: 10.1128/msphere.00762-23. Epub 2024 May 15. mSphere. 2024. PMID: 38747590 Free PMC article.
-
Frateuria hangzhouensis sp. nov. Isolated from Soil of Moso Bamboo Forest in Hangzhou, China.Curr Microbiol. 2025 Apr 28;82(6):263. doi: 10.1007/s00284-025-04232-y. Curr Microbiol. 2025. PMID: 40293513
-
Differential anaerobic oxidation of benzoate in Geotalea daltonii FRC-32.Microbiol Spectr. 2025 Apr;13(4):e0232424. doi: 10.1128/spectrum.02324-24. Epub 2025 Mar 5. Microbiol Spectr. 2025. PMID: 40042335 Free PMC article.
-
Nitrogen fixation in the widely distributed marine γ-proteobacterial diazotroph Candidatus Thalassolituus haligoni.Sci Adv. 2024 Aug 2;10(31):eadn1476. doi: 10.1126/sciadv.adn1476. Epub 2024 Jul 31. Sci Adv. 2024. PMID: 39083619 Free PMC article.
References
-
- Görke B., Stülke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat. Rev. Microbiol. 2008;6:613–624. - PubMed
-
- Deutscher J. The mechanisms of carbon catabolite repression in bacteria. Curr. Opin. Microbiol. 2008;11:87–93. - PubMed
-
- Magasanik B. In: The Lactose Operon. Beckwith J., Zipser D., editors. Cold Spring Harbor Laboratory Press; 1970. Glucose effects: inducer exclusion and repression; pp. 189–220.
-
- Silby M.W., Winstanley C., Godfrey S.A.C., Levy S.B., Jackson R.W. Pseudomonas genomes: diverse and adaptable. FEMS Microbiol. Rev. 2011;35:652–680. - PubMed
LinkOut - more resources
Full Text Sources