Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Oct 21;13(45):13387-13392.
doi: 10.1039/d2sc05024b. eCollection 2022 Nov 23.

Towards new coordination modes of 1,2,3-triazolylidene: controlled by the nature of the 1st metalation in a heteroditopic bis-NHC ligand

Affiliations

Towards new coordination modes of 1,2,3-triazolylidene: controlled by the nature of the 1st metalation in a heteroditopic bis-NHC ligand

Praseetha Mathoor Illam et al. Chem Sci. .

Abstract

An unusual effect of the nature of the first metal coordination of a heteroditopic N-heterocyclic carbene ligand (L2) towards the coordination behavior of 1,2,3-tzNHC is explored. The first metal coordination at the ImNHC site (complexes 3 and 4) was noted to substantially influence the electronics of the 1,2,3-triazolium moiety leading to an unprecedented chemistry of this MIC donor. Along this line, the RhIII/IrIII-orthometalation in complexes 4 makes the triazolium C4-H more downfield shifted than C5-H, whereas a reverse trend, although to a lesser extent, is observed in the case of the non-chelated PdII-coordination. This difference in behavior assisted us to achieve the selective activation of triazole C4/C5 positions, not observed before, as supported by the isolation of the homo- and hetero-bimetallic complexes, 5, 6 and 7-9via C5- and C4-metalation, respectively. Furthermore, the %V bur calculations eliminate any considerable steric influence and the DFT studies strongly support the selectivity observed during bimetalation.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Comparison of previous reports on 1,2,3-triazolylidene complexes with the present work.
Scheme 1
Scheme 1. (a) Synthesis of [L1-H]Br and its palladium (1) and gold (2) complexes: (i) NaNO2, HCl/H2O (10% solution), 0 °C, 1 h; (ii) NaN3, 0 °C-RT, 12 h; (iii) vinyl acetate, reflux, 24 h; (iv) EtBr, CH3CN, reflux, 24 h; (v) [Pd(CH3CN)2Cl2], Cs2CO3, KBr, CH3CN/pyridine, 70 °C, 24 h; (vi) [Au(SMe2)Cl], Cs2CO3, CH3CN, 70 °C, 24 h; (b) molecular structures of 1 and 2 with ellipsoids at a 50% probability level. Hydrogen atoms except H8 and Me moieties of the N–Et groups are omitted for clarity. Pyridine is shown in capped stick.
Scheme 2
Scheme 2. (a) Synthesis of bisazolium salt, [L2-H2]Br2: (i) NaNO2, HCl/H2O (10% solution), 0 °C, 1 h; (ii) NaN3, 0 °C–RT, 12 h; (iii) vinyl acetate, reflux, 24 h; (iv) imidazole, K2CO3, CuO, DMSO, 150 °C, 48 h; (v) EtBr, DMF, reflux, 24 h. (b) Molecular structure of [L2-H2]Br2 with ellipsoids at a 50% probability level. Hydrogen atoms except H5, H12, and H13, counterions, solvent of crystallization and Me moieties of the N–Et groups are omitted for clarity.
Scheme 3
Scheme 3. (a) Synthesis of palladium (3), iridium (4a and a′), and rhodium (4b) complexes: (i) [Pd(CH3CN)2Cl2], Cs2CO3, KBr, CH3CN/pyridine, RT, 12 h. (ii) [M(Cp*)Cl2]2 (M = Ir/Rh), NaOAc, K2CO3/Cs2CO3, KBr (for 4a and b) or KI (for 4a′), CH3CN, 75 °C, 24 h. (b) Molecular structures of 3 and 4a′ with ellipsoids at 50% probability level. Hydrogen atoms except H15/H16 in 3 and H20/H21 in 4a′, counterions, and the Me groups of N–Et moieties are omitted for clarity. Pyridine and Cp* moieties are shown in capped stick.
Fig. 2
Fig. 2. 2D-NOESY NMR spectrum of 4a showing the interaction of triazolium C4–H with the N–CH2 protons of the ethyl group.
Scheme 4
Scheme 4. (a) Synthesis of the bimetallic complexes 5 and 6 from 3: (i) [Pd(CH3CN)2Cl2], Cs2CO3, KBr, CH3CN/pyridine, 60 °C, 24 h; (ii) Ag2O, DCM, RT, 12 h; (iii) [Au(SMe2)Cl], RT, 12 h. (b) Molecular structures of 5 and 6 with ellipsoids at a 50% probability level. Hydrogen atoms except H3 in 5, H15 in 6, and the Me groups of N–Et moieties are omitted for clarity. Pyridine groups are shown in capped stick.
Scheme 5
Scheme 5. (a) Synthesis of the heterobimetallic complexes 7–9: (i) [Pd(CH3CN)2Cl2], Cs2CO3, KBr, CH3CN/pyridine, 70 °C, 24 h. (ii) Ag2O, DCM, RT, 12 h and then [Au(SMe2)Cl], RT, 12 h. (b) Molecular structures of 7 and 8 with ellipsoids at a 50% probability level. Hydrogen atoms except H20 in 7 and H21 in 8, and the Me moieties of N–Et groups are omitted for clarity. Pyridine and Cp* moieties are shown in capped stick.

References

    1. For selected reviews, see:

    2. Bourissou D. Guerret O. Gabbaï F. P. Bertrand G. Chem. Rev. 2000;100:39–91. doi: 10.1021/cr940472u. - DOI - PubMed
    3. Diez-Gonzalez S. Nolan S. P. Coord. Chem. Rev. 2007;251:874–883. doi: 10.1016/j.ccr.2006.10.004. - DOI
    4. Nelson D. L. Nolan S. P. Chem. Soc. Rev. 2013;42:6723–6753. - PubMed
    5. Jahnke M. C. and Hahn F. E., Introduction to N-Heterocyclic Carbenes: Synthesis and Stereoelectronic Parameters, in N-Heterocyclic Carbenes from Laboratory Curiosities to Efficient Synthetic Tools, Royal Society of Chemistry, Cambridge, U.K, 2011, vol. 6, pp. 1–41
    1. For selected references, see:

    2. Dorta R. Stevens E. D. Scott N. M. Costabile C. Cavallo L. Hoff C. D. Nolan S. P. J. Am. Chem. Soc. 2005;127:2485–2495. doi: 10.1021/ja0438821. - DOI - PubMed
    3. Dröge T. Glorius F. Angew. Chem., Int. Ed. 2010;49:6940–6952. doi: 10.1002/anie.201001865. - DOI - PubMed
    4. Huynh H. V. Chem. Rev. 2018;118:9457–9492. doi: 10.1021/acs.chemrev.8b00067. - DOI - PubMed
    5. Gómez-Suárez A. Nelson D. J. Nolan S. P. Chem. Commun. 2017;53:2650–2660. doi: 10.1039/C7CC00255F. - DOI - PubMed
    1. Schaper L.-A. Hock S. J. Herrmann W. A. Kühn F. E. Angew. Chem., Int. Ed. 2013;52:270–289. doi: 10.1002/anie.201205119. - DOI - PubMed
    2. Visbal R. Gimeno M. C. Chem. Soc. Rev. 2014;43:3551–3574. doi: 10.1039/C3CS60466G. - DOI - PubMed
    3. Mata J. A. Hahn F. E. Peris E. , Chem. Sci. 2014;5:1723–1732. doi: 10.1039/C3SC53126K. - DOI
    4. Nayak S. Gaonkar S. L. ChemMedChem. 2021;16:1360–1390. doi: 10.1002/cmdc.202000836. - DOI - PubMed
    5. Hahn F. E. Jahnke M. C. Angew. Chem., Int. Ed. 2008;47:3122–3172. doi: 10.1002/anie.200703883. - DOI - PubMed
    6. Evans K. J. Mansell S. M. Chem.–Eur. J. 2020;26:5927–5941. doi: 10.1002/chem.201905510. - DOI - PMC - PubMed
    7. Sinha N. Hahn F. E. Acc. Chem. Res. 2017;50:2167–2184. doi: 10.1021/acs.accounts.7b00158. - DOI - PubMed
    8. Nishad R. C. Rit A. Chem.–Eur. J. 2021;27:594–599. doi: 10.1002/chem.202003937. - DOI - PubMed
    1. For selected references, see:

    2. Enders D. Breuer K. Raabe G. Runsink J. Teles J. H. Melder J.-P. Ebel K. Brode S. Angew. Chem., Int. Ed. Engl. 1995;34:1021–1023. doi: 10.1002/anie.199510211. - DOI
    3. Enders D. Breuer K. J. Prakt. Chem. 1997;339:397–399. doi: 10.1002/prac.19973390170. - DOI
    4. Metz M. T. S. Münster I. Wagenblast G. Strassner T. Organometallics. 2013;32:6257–6264. doi: 10.1021/om4004576. - DOI
    5. Singh V. K. Donthireddy S. N. R. Illam P. M. Rit A. Dalton Trans. 2020;49:11958–11970. doi: 10.1039/D0DT02142C. - DOI - PubMed
    6. Illam P. M. Rit A. Catal. Sci. Technol. 2022;12:67–74. doi: 10.1039/D1CY01767E. - DOI
    1. Guerret O. Solé S. Gornitzka H. Teichert M. Trinquier G. Bertrand G. J. Am. Chem. Soc. 1997;119:6668–6669. doi: 10.1021/ja964191a. - DOI