Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Feb 3;83(3):414-427.
doi: 10.1158/0008-5472.CAN-22-2145.

CSN6 Mediates Nucleotide Metabolism to Promote Tumor Development and Chemoresistance in Colorectal Cancer

Affiliations

CSN6 Mediates Nucleotide Metabolism to Promote Tumor Development and Chemoresistance in Colorectal Cancer

Shaomin Zou et al. Cancer Res. .

Abstract

Metabolic reprogramming can contribute to colorectal cancer progression and therapy resistance. Identification of key regulators of colorectal cancer metabolism could provide new approaches to improve treatment and reduce recurrence. Here, we demonstrate a critical role for the COP9 signalosome subunit CSN6 in rewiring nucleotide metabolism in colorectal cancer. Transcriptomic analysis of colorectal cancer patient samples revealed a correlation between CSN6 expression and purine and pyrimidine metabolism. A colitis-associated colorectal cancer model established that Csn6 intestinal conditional deletion decreased tumor development and altered nucleotide metabolism. CSN6 knockdown increased the chemosensitivity of colorectal cancer cells in vitro and in vivo, which could be partially reversed with nucleoside supplementation. Isotope metabolite tracing showed that CSN6 loss reduced de novo nucleotide synthesis. Mechanistically, CSN6 upregulated purine and pyrimidine biosynthesis by increasing expression of PHGDH, a key enzyme in the serine synthesis pathway. CSN6 inhibited β-Trcp-mediated DDX5 polyubiquitination and degradation, which in turn promoted DDX5-mediated PHGDH mRNA stabilization, leading to metabolic reprogramming and colorectal cancer progression. Butyrate treatment decreased CSN6 expression and improved chemotherapy efficacy. These findings unravel the oncogenic role of CSN6 in regulating nucleotide metabolism and chemosensitivity in colorectal cancer.

Significance: CSN6 deficiency inhibits colorectal cancer development and chemoresistance by downregulating PHGDH to block nucleotide biosynthesis, providing potential therapeutic targets to improve colorectal cancer treatment.

PubMed Disclaimer

Publication types

LinkOut - more resources