Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jan 17;57(2):939-950.
doi: 10.1021/acs.est.2c05282. Epub 2022 Dec 14.

Redispersion Behavior of 2D MoS2 Nanosheets: Unique Dependence on the Intervention Timing of Natural Organic Matter

Affiliations

Redispersion Behavior of 2D MoS2 Nanosheets: Unique Dependence on the Intervention Timing of Natural Organic Matter

Bei Liu et al. Environ Sci Technol. .

Abstract

The aggregation-redispersion behavior of nanomaterials determines their transport, transformation, and toxicity, which could be largely influenced by the ubiquitous natural organic matter (NOM). Nonetheless, the interaction mechanisms of two-dimensional (2D) MoS2 and NOM and the subsequent influences on the redispersion behavior are not well understood. Herein, we investigated the redispersion of single-layer MoS2 (SL-MoS2) nanosheets as influenced by Suwannee River NOM (SRNOM). It was found that SRNOM played a decisive role on the redispersion of MoS2 2D nanosheets that varied distinctly from the 3D nanoparticles. Compared to the poor redispersion of MoS2 aggregates in the absence or post-addition of SRNOM to the aggregates, co-occurrence of SRNOM in the dispersion could largely enhance the redispersion and mobility of MoS2 by intercalating into the nanosheets. Upon adsorption to SL-MoS2, SRNOM enhanced the hydration force and weakened the van der Waals forces between nanosheets, leading to the redispersion of the aggregates. The SRNOM fractions with higher molecular mass imparted better dispersity due to the preferable sorption of the large molecules onto SL-MoS2 surfaces. This comprehensive study advances current understanding on the transport and fate of nanomaterials in the water system and provides fresh insights into the interaction mechanisms between NOM and 2D nanomaterials.

Keywords: aggregation; redispersion; transformation; transition metal dichalcogenides (TMDs); two-dimensional nanomaterials.

PubMed Disclaimer

Publication types

LinkOut - more resources