Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Feb 21;52(8):2227-2242.
doi: 10.1039/d2dt03292a.

Structural characterization of a new fluorophosphotellurite glass system

Affiliations

Structural characterization of a new fluorophosphotellurite glass system

Renato Grigolon Capelo et al. Dalton Trans. .

Abstract

While phosphotellurite glasses have superior properties over SiO2-based glasses for many applications in optoelectronics and photonic devices, their high hydroxyl content limits their use in the mid-infrared range. This drawback can be overcome by fluoride addition to the formulation. In this work, we report the preparation, optical, and structural characterization of new glasses in the ternary system TeO2-xNaF-NaPO3 having the compositions 0.8TeO2-0.2[xNaF-(1 - x)NaPO3] and 0.6TeO2-0.4[xNaF-(1 - x)NaPO3] (0 ≤ x ≤ 1) obtained by the traditional melt-quenching method and labeled as T8NNx and T6NNx, respectively. Differential scanning calorimetry (DSC) reveals high thermal stability against crystallization, with Tx-Tg varying from 80 to 130 °C, depending on fluoride/phosphate ratios. Raman spectroscopy suggests that the network connectivity increases with increasing phosphate concentration. 125Te, 23Na, 31P, and 19F NMR spectroscopy provides detailed structural information about Te-O-P, Te-F, Te-O-Te, P-O-P, and P-F linkages and the charge compensation mechanism for the sodium ions. The present study is the first comprehensive structural characterization of a fluorophosphotellurite glass system.

PubMed Disclaimer

LinkOut - more resources