Lidocaine alleviates inflammation and pruritus in atopic dermatitis by blocking different population of sensory neurons
- PMID: 36521846
- DOI: 10.1111/bph.16012
Lidocaine alleviates inflammation and pruritus in atopic dermatitis by blocking different population of sensory neurons
Abstract
Background and purpose: Atopic dermatitis is a common chronic pruritic inflammatory disease of the skin involving neuro-immune communication. Neuronal mechanism-based therapeutic treatments remain lacking. We investigated the efficacy of intravenous lidocaine therapy on atopic dermatitis and the underlying neuro-immune mechanism.
Experimental approach: Pharmacological intervention, immunofluorescence, RNA-sequencing, genetic modification and immunoassay were performed to dissect the neuro-immune basis of itch and inflammation in atopic dermatitis-like mouse model and in patients.
Key results: Lidocaine alleviated skin lesions and itch in both atopic dermatitis patients and calcipotriol (MC903)-induced atopic dermatitis model by blocking subpopulation of sensory neurons. QX-314, a charged NaV blocker that enters through pathologically activated large-pore ion channels and selectivity inhibits a subpopulation of sensory neurons, has the same effects as lidocaine in atopic dermatitis model. Genetic silencing NaV 1.8-expressing sensory neurons was sufficient to restrict cutaneous inflammation and itch in the atopic dermatitis model. However, pharmacological blockade of TRPV1-positive nociceptors only abolished persistent itch but did not affect skin inflammation in the atopic dermatitis model, indicating a difference between sensory neuronal modulation of skin inflammation and itch. Inhibition of activity-dependent release of calcitonin gene-related peptide (CGRP) from sensory neurons by lidocaine largely accounts for the therapeutic effect of lidocaine in the atopic dermatitis model.
Conclusion and implications: NaV 1.8+ sensory neurons play a critical role in pathogenesis of atopic dermatitis and lidocaine is a potential anti-inflammatory and anti-pruritic agent for atopic dermatitis. A dissociable difference for sensory neuronal modulation of skin inflammation and itch contributes to further understanding of pathogenesis in atopic dermatitis.
Keywords: atopic dermatitis; lidocaine; neurogenic inflammation; pruritus.
© 2022 British Pharmacological Society.
References
REFERENCES
-
- Abrahamsen, B., Zhao, J., Asante, C. O., Cendan, C. M., Marsh, S., Martinez-Barbera, J. P., Nassar, M. A., Dickenson, A. H., & Wood, J. N. (2008). The cell and molecular basis of mechanical, cold, and inflammatory pain. Science, 321(5889), 702-705. https://doi.org/10.1126/science.1156916
-
- Agarwal, N., Offermanns, S., & Kuner, R. (2004). Conditional gene deletion in primary nociceptive neurons of trigeminal ganglia and dorsal root ganglia. Genesis, 38(3), 122-129. https://doi.org/10.1002/gene.20010
-
- Alexander, S. P., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Southan, C., Davies, J. A., Abbracchio, M. P., Alexander, W., Al-hosaini, K., Bäck, M., Barnes, N. M., Bathgate, R., … Ye, R. D. (2021). THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein-coupled receptors. British Journal of Pharmacology, 178(S1), S27-S156. https://doi.org/10.1111/bph.15538
-
- Alexander, S. P., Mathie, A., Peters, J. A., Veale, E. L., Striessnig, J., Kelly, E., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Southan, C., Davies, J. A., Aldrich, R. W., Attali, B., Baggetta, A. M., Becirovic, E., Biel, M., Bill, R. M., Catterall, W. A., … Zhu, M. (2021). THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Ion channels. British Journal of Pharmacology, 178(S1), S157-S245. https://doi.org/10.1111/bph.15539
-
- Alexander, S. P., Fabbro, D., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Southan, C., Davies, J. A., Beuve, A., Brouckaert, P., Bryant, C., Burnett, J. C., Farndale, R. W., Friebe, A., Garthwaite, J., … Waldman, S. A. (2021). THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Catalytic receptors. British Journal of Pharmacology, 178(S1), S264-S312. https://doi.org/10.1111/bph.15541
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials
