Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1978 Oct 31;17(22):4750-5.
doi: 10.1021/bi00615a024.

Alternative hydroxylases for the aerobic and anaerobic biosynthesis of ubiquinone in Escherichia coli

Comparative Study

Alternative hydroxylases for the aerobic and anaerobic biosynthesis of ubiquinone in Escherichia coli

K Alexander et al. Biochemistry. .

Abstract

The synthesis of ubiquinone under anaerobic conditions was examined in a variety of strains of Escherichia coli K12. All were shown to synthesize appreciable quantities of ubiquinone 8 when grown anaerobically on glycerol in the presence of fumarate. Under these conditions, ubiquinone 8 was in most cases the principal quinone formed, and levels in the range 50--70% of those obtained aerobically were observed. Studies with mutants blocked in the various reactions of the aerobic pathway for ubiquinone 8 synthesis established that under anaerobic conditions three alternative hydroxylation reactions not involving molecular oxygen are used to derive the C-4, -5, and -6 oxygens of ubiquinone 8. Thus, mutants blocked in either of the three hydroxylation reactions of the aerobic pathway (ubiB, ubiH, or ubiF) are each able to synthesize ubiquinone 8 anaerobically, whereas mutants lacking the octaprenyltransferase (ubiA), carboxy-lyase (ubiD), or methyltransferases (ubiE or ubiG) of the aerobic pathway remain blocked anaerobically. The demonstration that E. coli possesses a special mechanism for the anaerobic biosynthesis of ubiquinone suggests that this quinone may play an important role in anaerobic metabolism.

PubMed Disclaimer

Publication types

LinkOut - more resources