Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jan;9(1):179-190.
doi: 10.1038/s41477-022-01291-y. Epub 2022 Dec 15.

Single-cell RNA sequencing provides a high-resolution roadmap for understanding the multicellular compartmentation of specialized metabolism

Affiliations

Single-cell RNA sequencing provides a high-resolution roadmap for understanding the multicellular compartmentation of specialized metabolism

Sijie Sun et al. Nat Plants. 2023 Jan.

Abstract

Monoterpenoid indole alkaloids (MIAs) are among the most diverse specialized metabolites in plants and are of great pharmaceutical importance. We leveraged single-cell transcriptomics to explore the spatial organization of MIA metabolism in Catharanthus roseus leaves, and the transcripts of 20 MIA genes were first localized, updating the model of MIA biosynthesis. The MIA pathway was partitioned into three cell types, consistent with the results from RNA in situ hybridization experiments. Several candidate transporters were predicted to be essential players shuttling MIA intermediates between inter- and intracellular compartments, supplying potential targets to increase the overall yields of desirable MIAs in native plants or heterologous hosts through metabolic engineering and synthetic biology. This work provides not only a universal roadmap for elucidating the spatiotemporal distribution of biological processes at single-cell resolution, but also abundant cellular and genetic resources for further investigation of the higher-order organization of MIA biosynthesis, transport and storage.

PubMed Disclaimer

Comment in

References

    1. Brown, S., Clastre, M., Courdavault, V. & O’Connor, S. E. De novo production of the plant-derived alkaloid strictosidine in yeast. Proc. Natl Acad. Sci. USA 112, 3205–3210 (2015). - DOI
    1. Pan, Q., Mustafa, N. R., Tang, K., Choi, Y. H. & Verpoorte, R. Monoterpenoid indole alkaloids biosynthesis and its regulation in Catharanthus roseus: a literature review from genes to metabolites. Phytochem. Rev. 15, 221–250 (2016). - DOI
    1. Facchini, P. J. & De Luca, V. Opium poppy and Madagascar periwinkle: model non-model systems to investigate alkaloid biosynthesis in plants. Plant J. 54, 763–784 (2008). - DOI
    1. Zhu, X., Zeng, X., Sun, C. & Chen, S. Biosynthetic pathway of terpenoid indole alkaloids in Catharanthus roseus. Front. Med. 8, 285–293 (2014). - DOI
    1. Courdavault, V. et al. A look inside an alkaloid multisite plant: the Catharanthus logistics. Curr. Opin. Plant Biol. 19, 43–50 (2014). - DOI

Publication types

MeSH terms

Substances

LinkOut - more resources