Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Jan:137:104258.
doi: 10.1016/j.jbi.2022.104258. Epub 2022 Dec 14.

Textual emotion detection in health: Advances and applications

Affiliations
Free article
Review

Textual emotion detection in health: Advances and applications

Alieh Hajizadeh Saffar et al. J Biomed Inform. 2023 Jan.
Free article

Abstract

Textual Emotion Detection (TED) is a rapidly growing area in Natural Language Processing (NLP) that aims to detect emotions expressed through text. In this paper, we provide a review of the latest research and development in TED as applied in health and medicine. We focus on medical and non-medical data types, use cases, and methods where TED has been integral in supporting decision-making. The application of NLP technologies in health, and particularly TED, requires high confidence that these technologies and technology-aided treatment will first, do no harm. Therefore, this review also aims to assess the accuracy of TED systems and provide an update on the state of the technology. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines were used in this review. With a specific focus on the identification of different human emotions in text, the more general sentiment analysis studies that only recognize the polarity of text were excluded. A total of 66 papers met the inclusion criteria. This review found that TED in health and medicine is mainly used in the detection of depression, suicidal ideation, and the mental status of patients with asthma, Alzheimer's disease, cancer, and diabetes with major data sources of social media, healthcare services, and counseling centers. Approximately, 44% of the research in the domain is related to COVID-19, investigating the public health response to vaccinations and the emotional response of the public. In most cases, deep learning-based NLP techniques were found to be preferred over other methods due to their superior performance. Developing methods for implementing and evaluating dimensional emotional models, resolving annotation challenges by utilizing health-related lexicons, and using deep learning techniques for multi-faceted and real-time applications were found to be among the main avenues for further development of TED applications in health.

Keywords: Health applications; Machine learning; Medical applications; Mental health; Natural language processing; Physical health; Textual emotion detection.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources