Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jan 16;6(1):318-324.
doi: 10.1021/acsabm.2c00907. Epub 2022 Dec 20.

Aptamer-Engineered Cu2O Nanocubes as a Surface-Modulated Catalytic Optical Sensor for Lung Cancer Cell Detection

Affiliations

Aptamer-Engineered Cu2O Nanocubes as a Surface-Modulated Catalytic Optical Sensor for Lung Cancer Cell Detection

Amily Fang-Ju Jou et al. ACS Appl Bio Mater. .

Abstract

Herein, fine and homogeneous Cu2O nanocubes are synthesized and sensitized with a hairpin-structured AS1411 aptamer for the establishment of a biosensor for lung cancer cell detection. The Apt-Cu2O nanocubes feature a recognition function in identifying a cancer-associated surface nucleolin protein. The intrinsic reduction catalytic ability is also confirmed by the use of two benchmark substrates, methylene blue (MB) and 4-nitrophenol (4-NP). The aptamer grafting on Apt-Cu2O nanocubes is able to greatly prevent nonspecific-protein binding and to show specificity toward the nucleolin protein. The specific binding resulting from nucleolin protein leads to less exposure of the active area of the Apt-Cu2O nanocubes, so the catalytic ability of Apt-Cu2O nanocubes is thus diminished. The modulated catalytic ability led to less generation of the reduced 4-AP product, and the change in absorption of 4-AP allows the quantification of the nucleolin protein with a detection limit of 0.47 nM. The as-developed biosensor is applied to the detection of nucleolin-overexpressed A549 lung cancer cells, presenting a sensitive detection limit down to 20 cells. This may be ascribed to the clustering of surface nucleolin protein in a lipid raft membrane of cancer cells, as evidenced by a notable binding of Apt-Cu2O nanocubes on the cancer cell surface. Real human serum samples spiked with cancer cells were also investigated, and a recovery rate of 87 ± 2.4% for 20 extracted cells validates the surface-modulated Apt-Cu2O nanocubes-based catalytic optical biosensor as a promising tool for the detection of circulating tumor cells. The establishment of the Apt-Cu2O nanocubes may allow for further studies on their use as a potential theranostics tool for cancer therapy.

Keywords: aptamer; cancer detection; catalysis; cuprous oxide nanocube; nucleolin.

PubMed Disclaimer

Publication types

LinkOut - more resources